
1

FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

LEVEL II WEEKEND PROGRAM

LECTURER: Mr. Elias NTAWUZUMUNSI

ACADEMIC YEAR: 2017-2018

MODULE: DATA STRUCTURES AND

ALGORITHMS ANALYSIS (DSAA2513)

SYLLABUS

2

Table of Contents

CHAPTER 1: INTRODUCTION TO C++ PROGRAMMING LANGUAGE 3

Basics of C++ ... 4

Data Types in C++ ... 5

Operators in C++ ... 10

Decision making in C++ .. 14

Looping in C++ .. 18

Functions in C++ ... 22

CHAPTER 2: OBJECT ORIENTED PROGRAMMING ... 26

Defining Class and Declaring Objects ... 31

Overview of Inheritance .. 34

Inheritance Visibility Mode ... 35

Types of Inheritance .. 36

Polymorphism .. 38

CHAPTER III: FUNDAMENTAL DATA STRUCTURES .. 39

1.STACK ... 39

2. QUEUES .. 47

3. LINKED LISTS ... 51

4. HASHING.. 55

5. TREE DATA STRUCTURES ... 62

6. GRAPHS .. 74

CHAPTER 4: ANALYSIS OF ALGORITHM ... 80

4.1 Algorithmic Complexity .. 80

4.2 How to Design Algorithms .. 84

4.3 How to Express Algorithms ... 85

4.4 Fundamental Concepts of Algorithm ... 85

4.5 FUNDAMENTAL ALGORITHMS STRATEGIES ... 86

4.6 GRAPH AND TREE ALGORITHMS .. 104

4.6.1 Depth-first search (DFS) for undirected graphs.. 104

4.6.2 Breadth-First Search Traversal Algorithm .. 109

4.6.3 Dijkstra’s shortest path algorithm ... 115

4.6.4 Kruskal's Algorithm .. 121

3

CHAPTER 1: INTRODUCTION TO C++ PROGRAMMING LANGUAGE

What we will cover in Basics of C++

 Overview and OOPS concept

 Basic Syntax and Structure of programming

 Data Types and Modifiers

 Variables and Operators in C++

 Decision Making

 Types of Loops

 Types of Storage Classes

 Introduction to Functions

C++, as we all know is an extension to C language and was developed by Bjarne

stroustrup at bell labs. C++ is an intermediate level language, as it comprises a

confirmation of both high level and low level language features. C++ is a statically typed,

free form, multiparadigm, compiled general-purpose language.

C++ is an Object Oriented Programming language but is not purely Object Oriented. Its

features like Friend and Virtual, violate some of the very important OOPS features,

rendering this language unworthy of being called completely Object Oriented. Its a middle

level language.

Benefits of C++ over C Language

The major difference being OOPS concept, C++ is an object oriented language whereas C

language is a procedural language. Apart form this there are many other features of C++

which gives this language an upper hand on C laguage.

Following features of C++ makes it a stronger language than C,

1. There is Stronger Type Checking in C++.

2. All the OOPS features in C++ like Abstraction, Encapsulation, Inheritance etc

makes it more worthy and useful for programmers.

3. C++ supports and allows user defined operators (i.e Operator Overloading) and

function overloading is also supported in it.

4. Exception Handling is there in C++.

5. The Concept of Virtual functions and also Constructors and Destructors for Objects.

6. Inline Functions in C++ instead of Macros in C language. Inline functions make

complete function body act like Macro, safely.

7. Variables can be declared anywhere in the program in C++, but must be declared

before they are used.

4

Basics of C++

In this section we will cover the basics of C++, it will include the syntax, variable,

operators, loop types, pointers, references and information about other requirements of a

C++ program. You will come across lot of terms that you have already studied in C

language.

Syntax and Structure of C++ program

Here we will discuss one simple and basic C++ program to print "Hello this is C++" and its

structure in parts with details and uses.

First C++ program

include <iostream>

using namespace std;

int main()

{

cout << "Hello this is C++";

}

Header files are included at the beginning just like in C program. Here iostream is a

header file which provides us with input & output streams. Header files contained

predeclared function libraries, which can be used by users for their ease.

Using namespace std, tells the compiler to use standard namespace. Namespace collects

identifiers used for class, object and variables. NameSpace can be used by two ways in a

program, either by the use of using statement at the beginning, like we did in above

mentioned program or by using name of namespace as prefix before the identifier with

scope resolution (::) operator.

Example :std::cout << "A";

main(), is the function which holds the executing part of program its return type is int.

cout <<, is used to print anything on screen, same as printf in C language. cin and cout

are same as scanf and printf, only difference is that you do not need to mention format

specifiers like, %d for int etc, in cout & cin.

Comments

For single line comments, use // before mentioning comment, like

cout<<"single line"; // This is single line comment

For multiple line comment, enclose the comment between /* and */

/*this is

 a multiple line

5

 comment */

Using Classes

Classes name must start with capital letter, and they contain data variables and member

functions. This is a mere introduction to classes, we will discuss classes in detail throughout

the C++ tutorial.

class Abc

{

 int i; //data variable

 void display() //Member Function

 {

 cout<<"Inside Member Function";

 }

}; // Class ends here

int main()

{

 Abc obj; // Creatig Abc class's object

 obj.display(); //Calling member function using class object

}

This is how class is defined, its object is created and the member functions are used.

Variables can be declared anywhere in the entire program, but must be declared, before they

are used. Hence, we don't need to declare variable at the start of the program.

Data Types in C++

They are used to define type of variables and contents used. Data types define the way you

use storage in the programs you write. Data types can be built in or abstract.

Built in Data Types

These are the data types which are predefined and are wired directly into the compiler. eg:

int, char etc.

User defined or Abstract data types

These are the type, that user creates as a class. In C++ these are classes where as in C it was

implemented by structures.

Basic Built in types

char for character storage (1 byte)

int for integral number (2 bytes)

6

float single precision floating point (4 bytes)

double double precision floating point numbers (8 bytes)

Example :

char a = 'A'; // character type

int a = 1; // integer type

float a = 3.14159; // floating point type

double a = 6e-4; // double type (e is for exponential)

Other Built in types

bool Boolean (True or False)

void Without any Value

wchar_t Wide Character

Enum as Data type

Enumerated type declares a new type-name and a sequence of value containing identifiers

which has values starting from 0 and incrementing by 1 every time.

For Example :

enum day(mon, tues, wed, thurs, fri) d;

Here an enumeration of days is defined with variable d. mon will hold value 0, tue will have

1 and so on. We can also explicitly assign values, like, enum day(mon, tue=7, wed);.

Here, mon will be 0, tue is assigned 7, so wed will have value 8.

Modifiers

Specifiers modify the meanings of the predefined built-in data types and expand them to a

much larger set. There are four data type modifiers in C++, they are :

1. long

2. short

3. signed

4. unsigned

Below mentioned are some important points you must know about the modifiers,

 long and short modify the maximum and minimum values that a data type will hold.

 A plain int must have a minimum size of short.

7

 Size hierarchy : short int < int < long int

 Size hierarchy for floating point numbers is : float < double < long double

 long float is not a legal type and there are no short floating point numbers.

 Signed types includes both positive and negative numbers and is the default type.

 Unsigned, numbers are always without any sign, that is always positive.

What are Variables

Variable are used in C++, where we need storage for any value, which will change in

program. Variable can be declared in multiple ways each with different memory

requirements and functioning. Variable is the name of memory location allocated by the

compiler depending upon the datatype of the variable.

Basic types of Variables

Each variable while declaration must be given a datatype, on which the memory assigned to

the variable depends. Following are the basic types of variables,

bool For variable to store boolean values(True or False)

char For variables to store character types.

int for variable with integral values

float and double are also types for variables with large and floating point values

Declaration and Initialization

Variable must be declared before they are used. Usually it is preferred to declare them at the

starting of the program, but in C++ they can be declared in the middle of program too, but

must be done before using them.

8

Example :

int i; // declared but not initialised

char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration

i = 10; // initialization

Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step

int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value. Also, if a

variable is once declared and if try to declare it again, we will get a compile time error.

int i,j;

i=10;

j=20;

int j=i+j; //compile time error, cannot redeclare a variable in same

scope

Scope of Variables

All the variables have their area of functioning, and out of that boundary they don't hold

their value, this boundary is called scope of the variable. For most of the cases its between

the curly braces,in which variable is declared that a variable exists, not outside it. We will

study the storage classes later, but as of now, we can broadly divide variables into two main

types,

 Global Variables

 Local variables

Global variables

Global variables are those, which ar once declared and can be used throughout the lifetime

of the program by any class or any function. They must be declared outside the main()

function. If only declared, they can be assigned different values at different time in program

lifetime. But even if they are declared and initialized at the same time outside the main()

function, then also they can be assigned any value at any point in the program.

9

Example : Only declared, not initialized

include <iostream>

using namespace std;

int x; // Global variable declared

int main()

{

 x=10; // Initialized once

 cout <<"first value of x = "<< x;

 x=20; // Initialized again

 cout <<"Initialized again with value = "<< x;

}

Local Variables

Local variables are the variables which exist only between the curly braces, in which its

declared. Outside that they are unavailable and leads to compile time error.

Example :

include <iostream>

using namespace std;

int main()

{

 int i=10;

 if(i<20) // if condition scope starts

 {

 int n=100; // Local variable declared and initialized

 } // if condition scope ends

 cout << n; // Compile time error, n not available here

}

Some special types of variable

There are also some special keywords, to impart unique characteristics to the variables in

the program. Following two are mostly used, we will discuss them in details later.

1. Final - Once initialized, its value can’t be changed.

2. Static - These variables holds their value between function calls.

Example :

include <iostream>

using namespace std;

int main()

{

 final int i=10;

 static int y=20;

{

10

Operators in C++

Operators are special type of functions that takes one or more arguments and produces a

new value. For example: addition (+), substraction (-), multiplication (*) etc, are all

operators. Operators are used to perform various operations on variables and constants.

Types of operators

1. Assignment Operator

2. Mathematical Operators

3. Relational Operators

4. Logical Operators

5. Bitwise Operators

6. Shift Operators

7. Unary Operators

8. Ternary Operator

9. Comma Operator

Assignment Operator (=)

Operates '=' is used for assignment, it takes the right-hand side (called rvalue) and copy it

into the left-hand side (called lvalue). Assignment operator is the only operator which can

be overloaded but cannot be inherited.

Mathematical Operators

There are operators used to perform basic mathematical operations. Addition (+) ,

subtraction (-) , diversion (/) multiplication (*) and modulus (%) are the basic mathematical

operators. Modulus operator cannot be used with floating-point numbers.

11

C++ and C also use a shorthand notation to perform an operation and assignment at same

type.

Example,

int x=10;

x += 4 // will add 4 to 10, and hence assign 14 to X.

x -= 5 // will subtract 5 from 10 and assign 5 to x.

Relational Operators

These operators establish a relationship between operands. The relational operators are : less

than (<) , grater thatn (>) , less than or equal to (<=), greater than equal to (>=), equivalent

(==) and not equivalent (!=).

You must notice that assignment operator is (=) and there is a relational operator, for

equivalent (==). These two are different from each other, the assignment operator assigns

the value to any variable, whereas equivalent operator is used to compare values, like in if-

else conditions, Example

int x = 10; //assignment operator

x=5; // again assignment operator

if(x == 5) // here we have used equivalent relational operator, for

comparison

{

 cout <<"Successfully compared";

}

Logical Operators

The logical operators are AND (&&) and OR (||). They are used to combine two different

expressions together.

If two statement are connected using AND operator, the validity of both statements will be

considered, but if they are connected using OR operator, then either one of them must be

valid. These operators are mostly used in loops (especially while loop) and in Decision

making.

Bitwise Operators

There are used to change individual bits into a number. They work with only integral data

types like char, int and long and not with floating point values.

 Bitwise AND operators &

12

 Bitwise OR operator |

 And bitwise XOR operator ^

 And, bitwise NOT operator ~

They can be used as shorthand notation too, & = , |= , ^= , ~= etc.

Shift Operators

Shift Operators are used to shift Bits of any variable. It is of three types,

1. Left Shift Operator <<

2. Right Shift Operator >>

3. Unsigned Right Shift Operator >>>

Unary Operators

These are the operators which work on only one operand. There are many unary operators,

but increment ++ and decrement -- operators are most used.

Other Unary Operators : address of &, dereference *, new and delete, bitwise not ~,

logical not !, unary minus - and unary plus +.

Ternary Operator

The ternary if-else ? : is an operator which has three operands.

int a = 10;

a > 5 ? cout << "true" : cout << "false"

Comma Operator

This is used to separate variable names and to separate expressions. In case of expressions,

the value of last expression is produced and used.

Example :

int a,b,c; // variables declaration using comma operator

a=b++, c++; // a = c++ will be done.

sizeof operator in C++

13

sizeOf is also an operator not a function, it is used to get information about the amount of

memory allocated for data types & Objects. It can be used to get size of user defined data

types too.

sizeOf operator can be used with and without parentheses. If you apply it to a variable you

can use it without parentheses.

cout << sizeOf(double); //Will print size of double

int x = 2;

int i = sizeOf x;

typedef Operator

typedef is a keyword used in C language to assign alternative names to existing types. Its

mostly used with user defined data types, when names of data types get slightly

complicated. Following is the general syntax for using typedef,

typedefexisting_namealias_name

Lets take an example and see how typedef actually works.

typedef unsigned long ulong;

The above statement define a term ulong for an unsigned long type. Now this ulong

identifier can be used to define unsigned long type variables.

ulong i, j ;

typedef and Pointers

typedef can be used to give an alias name to pointers also. Here we have a case in which use

of typedef is beneficial during pointer declaration.

In Pointers * binds to the right and not the left.

int* x, y ;

By this declaration statement, we are actually declaring x as a pointer of type int, whereas y

will be declared as a plain integer.

typedef int* IntPtr ;

IntPtr x, y, z;

But if we use typedef like in above example, we can declare any number of pointers in a

single statement.

14

Decision making in C++

Decision making is about deciding the order of execution of statements based on certain

conditions or repeat a group of statements until certain specified conditions are met. C++

handles decision-making by supporting the following statements,

 if statement

 switch statement

 conditional operator statement

 goto statement

Decision making with if statement

The if statement may be implemented in different forms depending on the complexity of

conditions to be tested. The different forms are,

1. Simple if statement

2. If....else statement

3. Nested if....else statement

4. else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement-inside;

}

 statement-outside;

If the expression is true, then 'statement-inside' it will be executed, otherwise 'statement-

inside' is skipped and only 'statement-outside' is executed.

Example :

#include< iostream.h>

int main()

{

 int x,y;

 x=15;

 y=13;

 if (x > y)

{

 cout << "x is greater than y";

 }

}

Output : x is greater than y

15

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement-block1;

}

else

{

 statement-block2;

}

If the 'expression' is true, the 'statement-block1' is executed, else 'statement-block1' is

skipped and 'statement-block2' is executed.

Example :

void main()

{

 int x,y;

x=15;

 y=18;

 if (x > y)

 {

 cout << "x is greater than y";

 }

 else

 {

 cout << "y is greater than x";

 }

}

Output : y is greater than x

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

{

 if(expression1)

 {

 statement-block1;

 }

 else

 {

 statement-block 2;

16

 }

}

else

{

 statement-block 3;

}

if 'expression' is false the 'statement-block3' will be executed, otherwise it continues to

perform the test for 'expression 1' . If the 'expression 1' is true the 'statement-block1' is

executed otherwise 'statement-block2' is executed.

Example :

void main()

{

 int a,b,c;

 clrscr();

 cout << "enter 3 number";

 cin >> a >> b >> c;

 if(a > b)

 {

 if(a > c)

 {

 cout << "a is greatest";

 }

 else

 {

 cout << "c is greatest";

 }

 }

 else

 {

 if(b> c)

 {

 cout << "b is greatest";

 }

 else

 {

 printf("c is greatest");

 }

 }

getch();

}

else-if ladder

The general form of else-if ladder is,

if(expression 1)

{

 statement-block1;

17

}

else if(expression 2)

{

 statement-block2;

}

else if(expression 3)

{

 statement-block3;

}

else

 default-statement;

The expression is tested from the top(of the ladder) downwards. As soon as the true

condition is found, the statement associated with it is executed.

Example :

void main()

{

 int a;

 cout << "enter a number";

 cin >> a;

 if(a%5==0 && a%8==0)

 {

 cout << "divisible by both 5 and 8";

 }

 else if(a%8==0)

 {

 cout << "divisible by 8";

 }

 else if(a%5==0)

 {

 cout << "divisible by 5";

 }

 else

 {

 cout << "divisible by none";

 }

getch();

}

Points to Remember

1. In if statement, a single statement can be included without enclosing it into curly

braces { }
2. int a = 5;

3. if(a > 4)

4. cout << "success";

No curly braces are required in the above case, but if we have more than one

statement inside if condition, then we must enclose them inside curly braces.

18

5. == must be used for comparison in the expression of if condition, if you use = the

expression will always return true, because it performs assignment not comparison.

6. Other than 0(zero), all other values are considered as true.
7. if(27)

8. cout << "hello";

In above example, hello will be printed.

Looping in C++

In any programming language, loops are used to execute a set of statements repeatedly until

a particular condition is satisfied.

How it works

A sequence of statement is executed until a specified condition is true. This sequence of

statement to be executed is kept inside the curly braces { } known as loop body. After

every execution of loop body, condition is checked, and if it is found to be true the loop

body is executed again. When condition check comes out to be false, the loop body will not

be executed.

19

There are 3 type of loops in C++ language

1. while loop

2. for loop

3. do-while loop

while loop

while loop can be address as an entry control loop. It is completed in 3 steps.

 Variable initialization.(e.g int x=0;)

 condition(e.g while(x<=10))

 Variable increment or decrement (x++ or x-- or x=x+2)

Syntax :

variable initialization ;

while (condition)

{

 statements ;

 variable increment or decrement ;

}

for loop

for loop is used to execute a set of statement repeatedly until a particular condition is

satisfied. we can say it an open ended loop. General format is,

for(initialization; condition ; increment/decrement)

{

 statement-block;

}

In for loop we have exactly two semicolons, one after initialization and second after

condition. In this loop we can have more than one initialization or increment/decrement,

separated using comma operator. for loop can have only one condition.

Nested for loop

We can also have nested for loop, i.e one for loop inside another for loop. Basic syntax is,

for(initialization; condition; increment/decrement)

{

 for(initialization; condition; increment/decrement)

20

 {

 statement ;

 }

}

do while loop

In some situations it is necessary to execute body of the loop before testing the condition.

Such situations can be handled with the help of do-while loop. do statement evaluates the

body of the loop first and at the end, the condition is checked using while statement.

General format of do-while loop is,

do

{

}

while(condition)

Jumping out of loop

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop or to

leave the loop as soon as certain condition becocmes true, that is jump out of loop. C

language allows jumping from one statement to another within a loop as well as jumping out

of the loop.

1) break statement

When break statement is encountered inside a loop, the loop is immediately exited and the

program continues with the statement immediately following the loop.

2) continue statement

It causes the control to go directly to the test-condition and then continue the loop process.

On encountering continue, cursor leave the current cycle of loop, and starts with the next

cycle.

Storage Classes in C++

Storage classes are used to specify the lifetime and scope of variables. How storage is

allocated for variables and How variable is treated by complier depends on these storage

classes.

These are basically divided into 5 different types :

21

1. Global variables

2. Local variables

3. Register variables

4. Static variables

5. Extern variables

Global Variables

These are defined at the starting , before all function bodies and are available throughout the

program.

using namespace std;

int globe; // Global variable

void func();

int main()

{

}

Local variables

They are defined and are available within a particular scope. They are also called

Automatic variable because they come into being when scope is entered and automatically

go away when the scope ends.

The keyword auto is used, but by default all local variables are auto, so we don't have to

explicitly add keyword auto before variable dedaration. Default value of such variable is

garbage.

Register variables

This is also a type of local variable. This keyword is used to tell the compiler to make access

to this variable as fast as possible. Variables are stored in registers to increase the access

speed.

But you can never use or compute address of register variable and also , a register variable

can be declared only within a block, that means, you cannot have global or static register

variables.

Static Variables

Static variables are the variables which are initialized & allocated storage only once at the

beginning of program execution, no matter how many times they are used and called in the

program. A static variable retains its value until the end of program.

22

void fun()

{

 static int i = 10;

 i++;

 cout << i;

}

int main()

{

 fun(); // Output = 11

 fun(); // Output = 12

 fun(); // Output = 13

}

As, i is static, hence it will retain its value through function calls, and is initialized only

once at the beginning.

Static specifiers are also used in classes, but that we will learn later.

Extern Variables

This keyword is used to access variable in a file which is declared & defined in some other

file, that is the existence of a global variable in one file is declared using extern keyword in

another file.

Functions in C++

Functions are used to provide modularity to a program. Creating an application using

function makes it easier to understand, edit, check errors etc.

Syntax of Function

23

return-typefunction-name (parameters)

{

 // function-body

}

 return-type : suggests what the function will return. It can be int, char, some pointer

or even a class object. There can be functions which does not return anything, they

are mentioned with void.

 Function Name : is the name of the function, using the function name it is called.

 Parameters : are variables to hold values of arguments passed while function is

called. A function may or may not contain parameter list.

void sum(int x, int y)

{

 int z;

 z = x + y;

 cout << z;

}

int main()

{

 int a = 10;

 int b = 20;

sum (a, b);

}

Here, a and b are sent as arguments, and x and y are parameters which will hold

values of a and b to perform required operation inside function.

 Function body : is he part where the code statements are written.

Declaring, Defining and Calling Function

Function declaration, is done to tell the compiler about the existence of the function.

Function's return type, its name & parameter list is mentioned. Function body is written in

its definition. Lets understand this with help of an example.

#include < iostream>

using namespace std;

int sum (int x, int y); //declaring function

int main()

{

 int a = 10;

 int b = 20;

 int c = sum (a, b); //calling function

 cout << c;

}

int sum (int x, int y) //defining function

{

24

 return (X + y);

}

Here, initially the function is declared, without body. Then inside main() function it is

called, as the function returns sumation of two values, hence z is their to store the value of

sum. Then, at last, function is defined, where the body of function is mentioned. We can

also, declare & define the function together, but then it should be done before it is called.

Calling a Function

Functions are called by their names. If the function is without argument, it can be called

directly using its name. But for functions with arguments, we have two ways to call them,

1. Call by Value

2. Call by Reference

Call by Value

In this calling technique we pass the values of arguments which are stored or copied into the

formal parameters of functions. Hence, the original values are unchanged only the

parameters inside function changes.

void calc(int x);

int main()

{

 int x = 10;

 calc(x);

 printf("%d", x);

}

void calc(int x)

{

 x = x + 10 ;

}

Output : 10

In this case the actual variable x is not changed, because we pass argument by value, hence

a copy of x is passed, which is changed, and that copied value is destroyed as the function

ends(goes out of scope). So the variable x inside main() still has a value 10.

But we can change this program to modify the original x, by making the function calc()

return a value, and storing that value in x.

int calc(int x);

int main()

{

 int x = 10;

 x = calc(x);

 printf("%d", x);

25

}

int calc(int x)

{

 x = x + 10 ;

 return x;

}

Output : 20

Call by Reference

In this we pass the address of the variable as arguments. In this case the formal parameter

can be taken as a reference or a pointer, in both the case they will change the values of the

original variable.

void calc(int *p);

int main()

{

 int x = 10;

 calc(&x); // passing address of x as argument

 printf("%d", x);

}

void calc(int *p)

{

 *p = *p + 10;

}

Output : 20

NOTE : If you do not have a prior knowledge of pointers, do study Pointers first.

26

CHAPTER 2: OBJECT ORIENTED PROGRAMMING

Object Oriented programming is a programming style that is associated with the concept of

OBJECTS, having datafields and related member functions.

Objects are instances of classes and are used to interact amongst each other to create

applications. Instance means, the object of class on which we are currently working. C++

can be said to be as C language with classes. In C++ everything revolves around object of

class, which have their methods & data members.

C++ can be said to be as C language with classes. In C++ everything revolves around object

of class, which have their methods & data members.

27

For Example : We consider human body as a class, we do have multiple objects of this

class, with variable as color, hair etc. and methods as walking, speaking etc.

Now, let us discuss some of the main features of object oriented programming which you

will be using in C++.

1. Objects

2. Classes

3. Abstraction

4. Encapsulation

5. Inheritance

6. Overloading

7. Exception Handling

Objects

Objects are the basic unit of OOP. They are instances of class, which have data members

and uses various member functions to perform tasks.

Class

It is similar to structures in C language. Class can also be defined as user defined data type

but it also contains functions in it. So, class is basically a blueprint for object. It declare &

defines what data variables the object will have and what operations can be performed on

the class's object.

28

Abstraction

Abstraction refers to showing only the essential features of the application and hiding the

details. In C++, classes provide methods to the outside world to access & use the data

variables, but the variables are hidden from direct access.

Encapsulation

It can also be said data binding. Encapsulation is all about binding the data variables and

functions together in class.

Inheritance

Inheritance is a way to reuse once written code again and again. The class which is inherited

is called base calls & the class which inherits is called derived class. So when, a derived

class inherits a base class, the derived class can use all the functions which are defined in

base class, hence making code reusable.

Polymorphism

Polymorphion makes the code more readable. It is a features, which lets is create functions

with same name but different arguments, which will perform differently. That is function

with same name, functioning in different

Overloading

Overloading is a part of polymorphion. Where a function or operator is made & defined

many times, to perform different functions they are said to be overloaded.

Exception Handling

Exception handling is a feature of OOP, to handle unresolved exceptions or errors produced

at runtime.

The classes are the most important feature of C++ that leads to Object Oriented

programming. Class is a user defined data type, which holds its own data members and

member functions, which can be accessed and used by creating instance of that class.

The variables inside class definition are called as data members and the functions are called

member functions.

29

For example : Class of birds, all birds can fly and they all have wings and beaks. So here

flying is a behavior and wings and beaks are part of their characteristics. And there are

many different birds in this class with different names but they all posses this behavior and

characteristics.

Similarly, class is just a blue print, which declares and defines characteristics and behavior,

namely data members and member functions respectively. And all objects of this class will

share these characteristics and behavior.

More about Classes

1. Class name must start with an uppercase letter. If class name is made of more than

one word, then first letter of each word must be in uppercase. Example,

class Study, class StudyTonight etc

2. Classes contain, data members and member functions, and the access of these data

members and variable depends on the access specifiers (discussed in next section).

3. Class's member functions can be defined inside the class definition or outside the

class definition.

4. Class in C++ are similar to structures in C, the only difference being, class defaults

to private access control, where as structure defaults to public.

5. All the features of OOPS, revolve around classes in C++. Inheritance,

Encapsulation, Abstraction etc.

6. Objects of class holds separate copies of data members. We can create as many

objects of a class as we need.

7. Classes do posses more characteristics, like we can create abstract classes,

immutable classes, all this we will study later.

Objects

Class is mere a blueprint or a template. No storage is assigned when we define a class.

Objects are instances of class, which holds the data variables declared in class and the

member functions work on these class objects.

Each object has different data variables. Objects are initialised using special class functions

called Constructors. We will study about constructors later.

And whenever the object is out of its scope, another special class member function called

Destructor is called, to release the memory reserved by the object. C++ doesn't have

Automatic Garbage Collector like in JAVA, in C++ Destructor performs this task.

class Abc

{

 int x;

 void display(){} //empty function

};

30

in main()

{

 Abc obj; // Object of class Abc created

}

Access Control in Classes

Now before studying how to define class and its objects, lets first quickly learn what are

access specifiers.

Access specifiers in C++ class defines the access control rules. C++ has 3 new keywords

introduced, namely,

1. public

2. private

3. protected

These access specifiers are used to set boundaries for availability of members of class be it

data members or member functions

Access specifiers in the program, are followed by a colon. You can use either one, two or all

3 specifiers in the same class to set different boundaries for different class members. They

change the boundary for all the declarations that follow them.

Public

Public, means all the class members declared under public will be available to everyone.

The data members and member functions declared public can be accessed by other classes

too. Hence there are chances that they might change them. So the key members must not be

declared public.

class PublicAccess

{

 public: // public access specifier

 int x; // Data Member Declaration

 void display(); // Member Function decaration

}

Private

Private keyword, means that no one can access the class members declared private outside

that class. If someone tries to access the private member, they will get a compile time error.

By default class variables and member functions are private.

class PrivateAccess

31

{

 private: // private access specifier

 int x; // Data Member Declaration

 void display(); // Member Function decaration

}

Protected

Protected, is the last access specifier, and it is similar to private, it makes class member

inaccessible outside the class. But they can be accessed by any subclass of that class. (If

class A is inherited by class B, then class B is subclass of class A. We will learn this later.)

class ProtectedAccess

{

 protected: // protected access specifier

 int x; // Data Member Declaration

 void display(); // Member Function decaration

}

Defining Class and Declaring Objects

When we define any class, we are not defining any data, we just define a structure or a

blueprint, as to what the object of that class type will contain and what operations can be

performed on that object.

Below is the syntax of class definition,

class ClassName

{

 Access specifier:

 Data members;

 Member Functions(){}

};

Here is an example, we have made a simple class named Student with appropriate members,

class Student

{

 public:

 int rollno;

 string name;

};

So its clear from the syntax and example, class definition starts with the keyword "class"

followed by the class name. Then inside the curly braces comes the class body, that is data

32

members and member functions, whose access is bounded by access specifier. A class

definition ends with a semicolon, or with a list of object declarations.

Example :

class Student

{

public:

int rollno;

string name;

}A,B;

Here A and B are the objects of class Student, declared with the class definition. We can

also declare objects separately, like we declare variable of primitive data types. In this case

the data type is the class name, and variable is the object.

int main()

{

 Student A;

 Student B;

}

Both A and B will have their own copies of data members.

Accessing Data Members of Class

Accessing a data member depends solely on the access control of that data member. If its

public, then the data member can be easily accessed using the direct member access (.)

operator with the object of that class.

If, the data member is defined as private or protected, then we cannot access the data

variables directly. Then we will have to create special public member functions to access,

use or initialize the private and protected data members. These member functions are also

called Accessors and Mutator methods or getter and setter functions.

Accessing Public Data Members

Following is an example to show you how to initialize and use the public data members

using the dot (.) operator and the respective object of class.

class Student

{

 public:

 int rollno;

 string name;

};

int main()

33

{

 Student A;

 Student B;

 A.rollno=1;

 A.name="Adam";

 B.rollno=2;

 B.name="Bella";

 cout <<"Name and Roll no of A is :"<< A.name << A.rollno;

 cout <<"Name and Roll no of B is :"<< B.name << B.rollno;

}

Accessing Private Data Members

To access, use and initialize the private data member you need to create getter and setter

functions, to get and set the value of the data member.

The setter function will set the value passed as argument to the private data member, and the

getter function will return the value of the private data member to be used. Both getter and

setter function must be defined public.

Example :

class Student

{

 private: // private data member

 int rollno;

 public: // public accessor and mutator functions

 int getRollno()

 {

 return rollno;

 }

 void setRollno(int i)

 {

 rollno=i;

 }

};

int main()

{

 Student A;

 A.rollono=1; //Compile time error

 cout<< A.rollno; //Compile time error

 A.setRollno(1); //Rollno initialized to 1

 cout<< A.getRollno(); //Output will be 1

}

34

So this is how we access and use the private data members of any class using the getter and

setter methods. We will discuss this in more details later.

Accessing Protected Data Members

Protected data members, can be accessed directly using dot (.) operator inside the subclass

of the current class, for non-subclass we will have to follow the steps same as to access

private data member.

Overview of Inheritance

Inheritance is the capability of one class to acquire properties and characteristics from

another class. The class whose properties are inherited by other class is called the Parent or

Base or Super class. And, the class which inherits properties of other class is called Child

or Derived or Sub class.

Inheritance makes the code reusable. When we inherit an existing class, all its methods and

fields become available in the new class, hence code is reused.

NOTE : All members of a class except Private, are inherited

Purpose of Inheritance

1. Code Reusability

2. Method Overriding (Hence, Runtime Polymorphism.)

3. Use of Virtual Keyword

Basic Syntax of Inheritance

class Subclass_name : access_mode Superclass_name

While defining a subclass like this, the super class must be already defined or atleast

declared before the subclass declaration.

Access Mode is used to specify, the mode in which the properties of superclass will be

inherited into subclass, public, privtate or protected.

Example of Inheritance

35

class Animal

{ public:

 int legs = 4;

};

class Dog : public Animal

{ public:

 int tail = 1;

};

int main()

{

 Dog d;

 cout << d.legs;

 cout << d.tail;

}

Output : 4 1

Inheritance Visibility Mode

Depending on Access modifier used while inheritance, the availability of class members of

Super class in the sub class changes. It can either be private, protected or public.

1) Public Inheritance

This is the most used inheritance mode. In this the protected member of super class becomes

protected members of sub class and public becomes public.

class Subclass : public Superclass

2) Private Inheritance

36

In private mode, the protected and public members of super class become private members

of derived class.

class Subclass : Superclass // By default its private inheritance

3) Protected Inheritance

In protected mode, the public and protected members of Super class becomes protected

members of Sub class.

class subclass : protected Superclass

Table showing all the Visibility Modes

Base class
Derived Class

Public Mode Private Mode Protected Mode

Private Not Inherited Not Inherited Not Inherited

Protected Protected Private Protected

Public Public Private Protected

Types of Inheritance

In C++, we have 5 different types of Inheritance. Namely,

1. Single Inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance (also known as Virtual Inheritance)

37

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most

simplest form of Inheritance.

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base

classes.

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

38

Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits from

some other class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

Polymorphism

Polymorphism means having multiple forms of one thing. In inheritance, polymorphism is

done, by method overriding, when both super and sub class have member function with

same declaration but different definition.

39

CHAPTER III: FUNDAMENTAL DATA STRUCTURES

1. STACK

A stack is a version of a list that is particularly useful in applications involving reversing,

such as the problem will be given later on. In a stack data structure, all insertions and

deletions of entries are made at one end, called the top of the stack.

A helpful analogy is to think of a stack of trays or of plates sitting on the counter in a busy

cafeteria. Throughout the lunch hour, customers take trays off the top of the stack, and

employees place returned trays back on top of the stack. The tray most recently put on the

stack is the first one taken off. The bottom tray is the first one put on, and the last one to be

used.

When we add an item to a stack, we say that we push it onto the stack, and when we remove

an item, we say that we pop it from the stack.

Note that the last item pushed onto a stack is always the first that will be popped from the

stack. This property is called last in, first out, or LIFO for short.

Shown in the following figure are the effects of push and pop operations on the stack.

As we said before, stacks are used internally by the compiler for implementing recursion;

generally, they are useful for computations that proceed ―inside out‖, as we will see below.

Let’s assume that our stack stores elements of some type T. The functionality that a stack

offers us more formally is the following.

• Adding an element: void push (const T & data)

• Look at the top (most recently-added) element: T top () (also sometimes, for instance in

the textbook, called T peek ()).

• Remove the top (most recently-added) element: void pop().

Notice that the only element that we can look at or remove is the one on top of the stack.

Also, in practice, to make the stack easier to use, you would probably add a function bool

40

isEmpty() which returns whether there are any elements on the stack. But the above three

are really what makes a stack.

As with other data structures we have seen so far, we’d like to define formally what is and

isn’t a stack.

As before, a recursive definition is perhaps clearest and simplest: A stack is either

1. The empty stack, or

2. Of the form S.push(data), where S is a stack, and data is a data item.

This tells us what is and isn’t a stack, but it doesn’t tell us the semantics of the stack

functions, i.e., what exactly they do. The nice thing about stacks is that they are simple

enough that we can completely specify the meaning of their functions using formulas. Some

people would call these formulas the stack axioms:

1. For all stacks S: s.push(data).top() = data.

2. For all stacks S: s.push(data).pop() = S.

This says that if you read the top element after pushing something on a stack, you get that

element back.

And if you remove the top element after pushing something on the stack, you get the

original stack back.

The definition does not say what happens when you call pop or top on an empty stack. (In

other words, we don’t define pop or top for the base case of our recursive stack definition.)

This is intentional: there is no real ―correct‖ meaning that we could assign those operations.

When you implement a stack, of course you will have to choose what happens, and you

should document your choice. But behavior for cases that really shouldn’t happen isn’t

really something that needs to go in a high-level definition of an abstract data type, and

someone who plans to use a stack to solve a problem to solve some bigger algorithmic

problems shouldn’t rely on specific behavior for faulty inputs.

A second thing to reiterate is that it is really quite amazing that the stack functionality can

be completely specified with two lines of math, and two simple lines at that. When we get to

queues later, this will not be possible. At an intuitive level, for a stack, adding and removing

come in pairs that are right next to each other, while for queues, there can be arbitrarily

many elements between adding an element and seeing it again. This means that to specify

the semantics of queue operations, one has to use much more advanced mathematical

specifications.

At an even more philosophical level, this difference is why many mathematically inclined

people prefer functional programming. Recursion by nature resembles stacks: the behavior

41

of a function can be summarized, and then substituted where it occurs. Analyzing for loops,

on the other hand, requires something called fixed point operators, which is much less

intuitive. As a result, carefully thought through recursive solutions are often much more

robust.

1.1 Example

As an example of something that is really easy to do with stacks, and wouldn’t at all be

obvious without stacks or recursion, let us look at the following task: You are given a string

of characters: lowercase letters and opening and closing parentheses, brackets, and braces ―(

[{ }])‖. The goal is to test if all of the parentheses/square brackets/braces match. To

illustrate the task, here are some examples:

1. ―([ab{c}]de())‖ is correct: all opening/closing braces match.

2. ―([ab]]‖ is incorrect: the closing square bracket does not match the opening

parenthesis.

3. ―ab}‖ is incorrect: there is no opening brace matching the closing one.

We now outline an algorithm (using a stack) to recognize whether the string has matching

parentheses and brackets and braces.

1. The stack starts out empty.

2. The string is scanned character by character, left to right.

• Each time an opening brace/bracket/parenthesis is encountered, push it onto the stack.

• When a letter is encountered, ignore it.

• When there is a closing brace/bracket/parenthesis, check if it matches what is on top of the

stack.

– If it does, then pop the matching brace/bracket/parenthesis off the stack.

– If it doesn’t, then signal that this is bad input (mismatch).

– If the stack was empty, then signal a bad input (missing opening parenthesis).

3. If the stack is not empty at the end, there was an unmatched opening

parenthesis/bracket/brace, so signal an error.

In a sense, we can regard the above algorithm as a very rudimentary parser. It’s easy to

imagine putting numbers to add or multiply in there, or putting C++ code inside the braces.

Indeed, most implementations of parsers for languages (programming languages, logic

formulas, arithmetic expressions, . . .) use stacks either explicitly or at least implicitly

(through recursion).

When you use the above techniques to write a parser for formulas (e.g., a simple calculator,

or a parser for a programming language, or for Boolean formulas), you would go one step

42

further: whenever you encounter a closing parenthesis, you know that you reached the end

of an expression that you are now ready to evaluate.

Typically, you would now pop stuff off the stack until you have the entire internal

expression, and instead push its value back on the stack. That way, you evaluate the formula

inside out.

Looking ahead a little bit to proving correctness of algorithms formally, we would like to

argue that the algorithm does the right thing. Of course, it is our intuition that it does —

otherwise, we wouldn’t have come up with this algorithm. But sometimes, we make

mistakes, not just in our implementation, but also in our logic.

There are techniques for mathematically proving that a program/algorithm is correct. These

are based on phrasing axioms about what exactly certain programming constructs do, such

as our axioms about the stack functions above. Whenever a program contains recursion or

loops, such proofs are invariably based on using induction. For loops, a key element of a

correctness proof by induction is what’s called a loop invariant: a property that will be true

after each iteration of the loop, such that it’s trivial that is true at the beginning (base case),

and if we can prove that it holds at the end, our program has done the correct thing. Then,

proving that the invariant holds from one loop to the next is exactly the induction step of a

proof by induction.

While we won’t do a full correctness proof by induction for this algorithm, for the curious

student, the following should be pointed out: the algorithm runs a loop over all characters of

the input string. The important part of the loop invariant is that at any time, the top of the

stack is the most recent unmatched opening parenthesis/bracket/brace. If one were to really

attempt the proof, this isn’t enough to make the induction step work. The actual hypothesis

needed is the following: at any stage of the processing, the stack contains all currently

unmatched parentheses, in right-to-left order (top-to-bottom in the stack).

1.2. Implementation of a general-purpose stack

A stack can be naturally (and quite easily) implemented using either a linked list or array (so

long as we dynamically resize it, the way we suggested for implementing a List).

For an implementation based on linked lists, we could insert and delete either at the head or

tail. Both are roughly equally easy to implement, though inserting and deleting at the head

may be even easier, because even a single-linked list will do:

• To push an item create a new element, link it to the old head, and make it the new

head.

43

• To read the top, return the head’s data item.

• To pop off the stack, remove the head from the list, and set its next element as the

new head.

Notice that for none of these operations do we ever need to access any element’s previous

element. We could also perform similar operations on the tail of a linked list, but in order to

pop the last element, we need to know its predecessor, which will be the new tail; so we

would need a doubly linked list, or to scan through the entire list to find the new tail. The

latter would of course be inefficient.

An implementation using arrays is not much more difficult: we have an array a and store the

size of the stack in some variable, say, called size.

• To push an item, we write it into a[size] and increment size. If we now exceed the

allocated array size, we expand the array by allocating a new larger array and copying the

data over, much like we did for the List datatype.

• To read the top, we simply return a[size-1].

• To pop an element off the stack, we decrement the size.

For both implementations, the running time of the top and pop operations is clearly O(1), as

we only return a directly accessible element, and update only a constant number of pointers

or integer variables. For push, the linked list implementation is also clearly O(1). For the

array implementation, it is O(1) except when the array size has to increase (in which case it

is _(n)). However, if we double the array size every time the array is too small (rather than,

say, incrementing it only by 1), then for every operation that takes (n), the next n operations

will require no doubling and thus take O(1). In total, those n+1 operations thus take O(n),

which means that on average, they take O(1). This is another example of ―amortized

analysis‖, which was discussed in the context of the Array List implementation.

Stack Example

Operation output stack

• push(8) - (8)

• push(3) - (3, 8)

• pop() 3 (8)

• push(2) - (2, 8)

• push(5) - (5, 2, 8)

• top() 5 (5, 2, 8)

• pop() 5 (2, 8)

• pop() 2 (8)

• pop() 8 ()

• pop() "error" ()

• push(9) - (9)

• push(1) - (1, 9)

44

Problem

Write a complete C++ program that implements a stack to solve the following problem:

Read an integer n, then read a list of n numbers, and print the list in reverse order.

Solution

/* Program stackNumbersSTL.cpp

Pre: The user supplies an integer n and n decimal numbers.

Post: The numbers are printed in reverse order.

Uses: The STL class stack and its methods

*/

#include <iostream>

#include <stdio.h>

using namespace std;

#include <stack>

int main(){

int n;

double item;

stack <double> numbers; // declares and initializes a stack of numbers

cout << " Type in an integer n followed by n decimal numbers." << endl

<< " The numbers will be printed in reverse order." << endl;

cin >> n;

for (int i = 0; i < n; i++) {

cin >> item;

numbers.push(item);

}

cout << endl << endl;

while (!numbers.empty()) {

cout << numbers.top() << " ";

numbers.pop();

}

getchar();

getchar();

}

47

45

Sample Output:

Type in an integer n followed by n integers.

The entered integers will be printed in reverse order.

5 21 43 65 78 49

49

78

65

43

21

Questions

1.What is a stack?

2. What is the purpose of the push() member method?

3. What is the purpose of the pop() member method?

4. What is the purpose of the isFull() member method?

5. What is the purpose of the isEmpty() member method?

6. What kind of value is assigned to the top attribute?

7. Why is the top attribute initialized to –1?

8. What is the purpose of the keyword private?

9. What is the purpose of the keyword public?

10. What is the difference between a constructor and a destructor?

46

Answers

1.A stack is the way you groups things together by placing one thing on top of another and then

removing them one at a time from the top of the stack.

2. The push() member method places a value onto the top of a stack.

3. The pop() member method removes the value from the top of a stack, which is then returned by the

pop() member method to the statement that calls the pop() member method.

4. The isFull() member method determines if there is room for one more value on the stack.

5. The isEmpty() member method determines if a value is at the top of the stack and is called before

an attempt is made to remove the value.

6. The value at the top attribute is an index.

7. The top attribute is initialized to –1 because when the attribute is incremented by the push()member

method, the new value of the topattribute is zero, which is the index of the first element of the array

used to create the stack.

8. The keyword private means that the attribute or member method is accessible only by a member

method. The instance of the class cannot directly access a private member of the class.

9. The keyword public means that the attribute or member method is accessible to member methods

and from the instance of the class.

10. A constructor is a member method of a class that is called when an instance of the class is

declared. A destructor is a member method of a class that is called when the instance of the class falls

out of scope.

47

2. QUEUES

Recall that queues provide ―First In First Out‖ (FIFO) access to data. When elements are

added into a queue, they can be read/removed only in exactly the order in which they were

added. The functionality of queues (storing elements of some type T) is the following:

• Adding an element: void enqueue(const T & data).

• Look at the oldest element in the queue: T peekfront().

• Remove the oldest element from the queue: void dequeue().

As with stacks, you’d likely want to add a function bool isEmpty() in practice. Notice again

the contrast to stacks: with a stack, you can only access (read/remove) the most recently

added element, while a queue only allows you to access the oldest element.

Much like with stacks, we can define formally what is and isn’t a queue. A queue is either:

1. the empty queue, or 2. of the form Q.enqueue(data), where Q is a queue, and data is a

data item. As we discussed above, the precise semantics of the operations on a queue are

much harder to specify, and far beyond what we can do in this class. (And unfortunately, at

USC, we do not have a class on semantics of programming languages.)

2.1 Implementation of a queue

Just like with a stack, a queue can be implemented using a linked list or an array.

For an implementation using linked lists, we have two choices: (1) insert at the head and

read/remove at the tail, or (2) insert at the tail and read/remove at the head. There’s a slight

advantage to the second version, because a singly linked list suffices: when we delete, we

only need to set head=head->next (and deallocate the old head). In order to delete at the tail,

we would need to know the tail’s predecessor, which would require a doubly linked list or a

linear-time search.

For an implementation using arrays, compared to stacks, we now need two integer indices:

one (say, newest) for the position of the newest element in the array, and one (say, oldest)

for the position of the oldest element. When enqueueing a new element, we can write it into

a[newest] and increment newest. To implement peekfront, we can return a[oldest], and to

dequeue the oldest element, we can just increment oldest by one. As before, when

enqueueing a new element and exceeding the current array size, we need to expand the

array.

One downside of this implementation is that it may be quite wasteful of space. In particular

if the queue is used for a long time, after a while, both newest and oldest may be large,

which means that most of the array is unused. Instead, we could have the array ―wrap

around‖, by doing calculations of the index newest modulo the array’s size. This makes

48

better use of space, but we now have to be careful not to overwrite the older elements with

newer elements. None of this is a huge obstacle, but one has to be a bit more careful in the

implementation, which perhaps makes an implementation based on linked lists slightly more

attractive.

The running time analysis is pretty much identical to the one for a stack. All operations are

O(1)

because they just involve updates of a small number of variables. As before the only

exception is the possible expansion of the array, which may take _(n), and which can again

be amortized if the array size doubles (or gets multiplied with some number b > 1, rather

than having something added to it) whenever the array is too small.

2.2 Why use restrictive data structures?

As we saw, a stack only allows access to the most recently added element, while a queue

only allows access to the oldest element in the data structure. Couldn’t we have a data

structure that allows access to either, as we need it?

Indeed, we can. There is a data structure called Deque, which does exactly that: it allows

adding and accessing (reading/removing) elements at both ends. If you understood how to

implement a stack and a queue, implementing a Deque will be easy for you. So why

wouldn’t we use a Deque everywhere instead of stacks or queues?

Or, perhaps more strongly: why don’t we just use the C++ vector class for all data

structures? It

combines the functionality of a stack, queue, and List in the sense in which we defined it in

previous lectures. So it is much more powerful.

One answer to this question is pedagogical: in this class, we want to learn how these data

structures work internally, and using a powerful tool without understanding it does not

contribute to learning. A second answer arises when we have to implement the data

structures ourselves: if a data structure provides more functions, then it is more work to

implement, and offers more places to make implementation mistakes. So if we implement

them ourselves, there’s something to be said for keeping our data structures simple. But of

course, that argument does not apply when we use data structures provided in a

programming language.

A third, and often appropriate, answer is that in order to implement more functions, the

implementation of other functions may be less efficient. For instance, in order to allow

access to each element in constant time, vector is implemented internally as an array. That

49

may slow down the implementation of some other functions, which could be implemented

faster if we didn’t also need access by index.

The fourth, and real, answer lies in our goal of writing code that we and our collaborators

can understand easily in the future. If you write code in which you explicitly use a variable

of type Stack, you make it clear that all your code needs is the Stack functionality, which

will help others (and yourself, if you return to your code weeks or months later) parse the

logic of your code. If instead, you had used Deque or Vector types, others may wonder

whether somewhere buried in line 1729 of your code, you actually access specific elements,

or need to access both the head and tail of your Deque. That makes it harder to understand

the logic. So in general, it is a good idea to think through your code’s logic ahead of time,

and only declare those data structures that you really need.

We could of course try to make this clear with our variable names, say, by writing

something like vector<int> stack. If we do this, it might convey our intention. But of course,

another interpretation would be that we had initially written Stack<int> stack, and then later

realized that we actually needed extra functionality. But because we didn’t want to rename

the variable everywhere, we just changed its type to vector<int>, so even though the

variable is called stack, it’s not actually used as one.

So the upshot is that you should ideally declare your variables to be of the type that you

actually need, not giving yourself extra functionality you don’t intend to use. In particular,

you may not find too many immediate uses for a Deque, since most of the time, you’ll want

either a Stack or Queue.

Queue operations

Main queue operations:

_ enqueue(o): inserts element o at the end of the queue

_ dequeue(): removes and returns the element at the front of the queue

Auxiliary queue operations:

_ front(): returns the element at the front without removing it

_ size(): returns the number of elements stored

_ isEmpty(): returns a Boolean value indicating whether no elements are stored Exceptions

_ Attempting the execution of dequeue or front on an empty queue throws an

EmptyQueueException

50

Example of Queue

Operation output queue

• enqueue(5) - (5)

• enqueue(3) - (5, 3)

• dequeue() 5 (3)

• enqueue(7) - (3, 7)

• dequeue() 3 (7)

• front() 7 (7)

• dequeue() 7 ()

• dequeue() "error" ()

• isEmpty() true ()

• enqueue(9) - (9)

• size() 1 (9)

51

3. LINKED LISTS

Linked List is a linear data structure and it is very common data structure which consists of

group of nodes in a sequence which is divided in two parts. Each node consists of its own

data and the address of the next node and forms a chain. Linked Lists are used to create trees

and graphs.

Advantages of Linked Lists

 They are a dynamic in nature which allocates the memory when required.

 Insertion and deletion operations can be easily implemented.

 Stacks and queues can be easily executed.

 Linked List reduces the access time.

Disadvantages of Linked Lists

 The memory is wasted as pointers require extra memory for storage.

 No element can be accessed randomly; it has to access each node sequentially.

 Reverse Traversing is difficult in linked list.

Applications of Linked Lists

 Linked lists are used to implement stacks, queues, graphs, etc.

 Linked lists let you insert elements at the beginning and end of the list.

 In Linked Lists we don’t need to know the size in advance.

52

Types of Linked Lists

 Singly Linked List : Singly linked lists contain nodes which have a data part as well

as an address part i.e. next, which points to the next node in sequence of nodes. The

operations we can perform on singly linked lists are insertion, deletion and traversal.

 Doubly Linked List : In a doubly linked list, each node contains two links the first

link points to the previous node and the next link points to the next node in the

sequence.

 Circular Linked List : In the circular linked list the last node of the list contains the

address of the first node and forms a circular chain.

Linear Linked List

The element can be inserted in linked list in 2 ways :

53

 Insertion at beginning of the list.

 Insertion at the end of the list.

We will also be adding some more useful methods like :

 Checking whether Linked List is empty or not.

 Searching any element in the Linked List

 Deleting a particular Node from the List

Insertion at the Beginning

Steps to insert a Node at beginning :

1. The first Node is the Head for any Linked List.

2. When a new Linked List is instantiated, it just has the Head, which is Null.

3. Else, the Head holds the pointer to the first Node of the List.

4. When we want to add any Node at the front, we must make the head point to it.

5. And the Next pointer of the newly added Node, must point to the previous Head,

whether it be NULL(in case of new List) or the pointer to the first Node of the List.

6. The previous Head Node is now the second Node of Linked List, because the new

Node is added at the front.

Inserting at the End

Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the

Linked List.

2. If the Linked List is not empty then we find the last node, and make it' next to the

new Node, hence making the new node the last Node.

Searching for an Element in the List

In searching we do not have to do much, we just need to traverse like we did while getting

the last node, in this case we will also compare the data of the Node. If we get the Node

with the same data, we will return it, otherwise we will make our pointer point the next

Node, and so on.

54

Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which

we want to delete and then we delete it. In our approach, we will define a method which will

take the data to be deleted as argument, will use the search method to locate it and will then

remove the Node from the List.

To remove any Node from the list, we need to do the following :

 If the Node to be deleted is the first node, then simply set the Next pointer of the

Head to point to the next element from the Node to be deleted.

 If the Node is in the middle somewhere, then find the Node before it, and make the

Node before it point to the Node next to it.

Checking whether the List is empty or not

We just need to check whether the Head of the List is NULL or not.

55

4. HASHING

In previous sections we were able to make improvements in our search algorithms by taking

advantage of information about where items are stored in the collection with respect to one

another. For example, by knowing that a list was ordered, we could search in logarithmic

time using a binary search. In this section we will attempt to go one step further by building

a data structure that can be searched in O(1) time. This concept is referred to as hashing.

A hash table is a collection of items which are stored in such a way as to make it easy to

find them later. Each position of the hash table, often called a slot, can hold an item and is

named by an integer value starting at 0. For example, we will have a slot named 0, a slot

named 1, a slot named 2, and so on. Initially, the hash table contains no items so every slot

is empty. We can implement a hash table by using a list with each element initialized to the

special Python value None. Figure 1 shows a hash table of size m=11. In other words, there

are m slots in the table, named 0 through 10.

Figure 1: Hash Table with 11 Empty Slots

The mapping between an item and the slot where that item belongs in the hash table is

called the hash function. The hash function will take any item in the collection and return

an integer in the range of slot names, between 0 and m-1. Assume that we have the set of

integer items 54, 26, 93, 17, 77, and 31. Our first hash function, sometimes referred to as the

―remainder method,‖ simply takes an item and divides it by the table size, returning the

remainder as its hash value (h(item)=item%11). Table 1 gives all of the hash values for our

example items. Note that this remainder method (modulo arithmetic) will typically be

present in some form in all hash functions, since the result must be in the range of slot

names.

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#tbl-hashvalues1

56

Table 1: Simple Hash Function Using Remainders

Item Hash Value

54 10

26 4

93 5

17 6

77 0

31 9

Once the hash values have been computed, we can insert each item into the hash table at the

designated position as shown in Figure 2. Note that 6 of the 11 slots are now occupied. This

is referred to as the load factor, and is commonly denoted by λ=number of items / table size.

For this example, λ=6/11.

Figure 2: Hash Table with Six Items

Now when we want to search for an item, we simply use the hash function to compute the

slot name for the item and then check the hash table to see if it is present. This searching

operation is O(1), since a constant amount of time is required to compute the hash value and

then index the hash table at that location. If everything is where it should be, we have found

a constant time search algorithm.

You can probably already see that this technique is going to work only if each item maps to

a unique location in the hash table. For example, if the item 44 had been the next item in our

collection, it would have a hash value of 0 (44%11==0). Since 77 also had a hash value of

0, we would have a problem. According to the hash function, two or more items would need

to be in the same slot. This is referred to as a collision (it may also be called a ―clash‖).

Clearly, collisions create a problem for the hashing technique. We will discuss them in

detail later.

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-hashtable2

57

Hash Functions

Given a collection of items, a hash function that maps each item into a unique slot is

referred to as a perfect hash function. If we know the items and the collection will never

change, then it is possible to construct a perfect hash function (refer to the exercises for

more about perfect hash functions). Unfortunately, given an arbitrary collection of items,

there is no systematic way to construct a perfect hash function. Luckily, we do not need the

hash function to be perfect to still gain performance efficiency.

One way to always have a perfect hash function is to increase the size of the hash table so

that each possible value in the item range can be accommodated. This guarantees that each

item will have a unique slot. Although this is practical for small numbers of items, it is not

feasible when the number of possible items is large. For example, if the items were nine-

digit Social Security numbers, this method would require almost one billion slots. If we only

want to store data for a class of 25 students, we will be wasting an enormous amount of

memory.

Our goal is to create a hash function that minimizes the number of collisions, is easy to

compute, and evenly distributes the items in the hash table. There are a number of common

ways to extend the simple remainder method. We will consider a few of them here.

The folding method for constructing hash functions begins by dividing the item into equal-

size pieces (the last piece may not be of equal size). These pieces are then added together to

give the resulting hash value. For example, if our item was the phone number 436-555-

4601, we would take the digits and divide them into groups of 2 (43,65,55,46,01). After the

addition, 43+65+55+46+01, we get 210. If we assume our hash table has 11 slots, then we

need to perform the extra step of dividing by 11 and keeping the remainder. In this case

210 % 11 is 1, so the phone number 436-555-4601 hashes to slot 1. Some folding methods

go one step further and reverse every other piece before the addition. For the above

example, we get 34+56+55+64+10=219 which gives 219 % 11=10.

Another numerical technique for constructing a hash function is called the mid-square

method. We first square the item, and then extract some portion of the resulting digits. For

example, if the item were 44, we would first compute 442=1,936. By extracting the middle

two digits, 93, and performing the remainder step, we get 5 (93 % 11). Table 2 shows items

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#tbl-hashvalues2

58

under both the remainder method and the mid-square method. You should verify that you

understand how these values were computed.

Table 2: Comparison of Remainder and Mid-Square Methods

Item Remainder Mid-Square

54 10 3

26 4 7

93 5 9

17 6 8

77 0 4

31 9 6

Collision Resolution

We now return to the problem of collisions. When two items hash to the same slot, we must

have a systematic method for placing the second item in the hash table. This process is

called collision resolution. As we stated earlier, if the hash function is perfect, collisions

will never occur. However, since this is often not possible, collision resolution becomes a

very important part of hashing.

One method for resolving collisions looks into the hash table and tries to find another open

slot to hold the item that caused the collision. A simple way to do this is to start at the

original hash value position and then move in a sequential manner through the slots until we

encounter the first slot that is empty. Note that we may need to go back to the first slot

(circularly) to cover the entire hash table. This collision resolution process is referred to as

open addressing in that it tries to find the next open slot or address in the hash table. By

systematically visiting each slot one at a time, we are performing an open addressing

technique called linear probing.

Figure 3 shows an extended set of integer items under the simple remainder method hash

function (54,26,93,17,77,31,44,55,20). Table 1 above shows the hash values for the original

items. Figure 2 shows the original contents. When we attempt to place 44 into slot 0, a

collision occurs. Under linear probing, we look sequentially, slot by slot, until we find an

open position. In this case, we find slot 1.

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-linearprobing
http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#tbl-hashvalues1
http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-hashtable2

59

Again, 55 should go in slot 0 but must be placed in slot 2 since it is the next open position.

The final value of 20 hashes to slot 9. Since slot 9 is full, we begin to do linear probing. We

visit slots 10, 0, 1, and 2, and finally find an empty slot at position 3.

Figure 3: Collision Resolution with Linear Probing

Once we have built a hash table using open addressing and linear probing, it is essential that

we utilize the same methods to search for items. Assume we want to look up the item 93.

When we compute the hash value, we get 5. Looking in slot 5 reveals 93, and we can return

True. What if we are looking for 20? Now the hash value is 9, and slot 9 is currently holding

31. We cannot simply return False since we know that there could have been collisions. We

are now forced to do a sequential search, starting at position 10, looking until either we find

the item 20 or we find an empty slot.

A disadvantage to linear probing is the tendency for clustering; items become clustered in

the table. This means that if many collisions occur at the same hash value, a number of

surrounding slots will be filled by the linear probing resolution. This will have an impact on

other items that are being inserted, as we saw when we tried to add the item 20 above. A

cluster of values hashing to 0 had to be skipped to finally find an open position. This cluster

is shown in Figure 4.

Figure 4: A Cluster of Items for Slot 0

One way to deal with clustering is to extend the linear probing technique so that instead of

looking sequentially for the next open slot, we skip slots, thereby more evenly distributing

the items that have caused collisions. This will potentially reduce the clustering that occurs.

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-clustering

60

Figure 5 shows the items when collision resolution is done with a ―plus 3‖ probe. This

means that once a collision occurs, we will look at every third slot until we find one that is

empty.

Figure 5: Collision Resolution Using ―Plus 3‖

The general name for this process of looking for another slot after a collision is rehashing.

With simple linear probing, the rehash function is newhashvalue=rehash(oldhashvalue)

where rehash(pos)=(pos+1)%sizeoftable. The ―plus 3‖ rehash can be defined as

rehash(pos)=(pos+3)%sizeoftable. In general, rehash(pos)=(pos+skip)%sizeoftable. It is

important to note that the size of the ―skip‖ must be such that all the slots in the table will

eventually be visited. Otherwise, part of the table will be unused. To ensure this, it is often

suggested that the table size be a prime number. This is the reason we have been using 11 in

our examples.

A variation of the linear probing idea is called quadratic probing. Instead of using a

constant ―skip‖ value, we use a rehash function that increments the hash value by 1, 3, 5, 7,

9, and so on. This means that if the first hash value is h, the successive values are h+1, h+4,

h+9, h+16, and so on. In other words, quadratic probing uses a skip consisting of successive

perfect squares. Figure 6 shows our example values after they are placed using this

technique.

Figure 6: Collision Resolution with Quadratic Probing

An alternative method for handling the collision problem is to allow each slot to hold a

reference to a collection (or chain) of items. Chaining allows many items to exist at the

same location in the hash table. When collisions happen, the item is still placed in the proper

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-linearprobing2
http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-quadratic

61

slot of the hash table. As more and more items hash to the same location, the difficulty of

searching for the item in the collection increases. Figure 7 shows the items as they are added

to a hash table that uses chaining to resolve collisions.

Figure 7: Collision Resolution with Chaining

When we want to search for an item, we use the hash function to generate the slot where it

should reside. Since each slot holds a collection, we use a searching technique to decide

whether the item is present. The advantage is that on the average there are likely to be many

fewer items in each slot, so the search is perhaps more efficient. We will look at the analysis

for hashing at the end of this section.

Self Check

Q-1: In a hash table of size 13 which index positions would the following two keys map to?

27, 130

Q-2: Suppose you are given the following set of keys to insert into a hash table that holds

exactly 11 values: 113 , 117 , 97 , 100 , 114 , 108 , 116 , 105 , 99 Which of the following

best demonstrates the contents of the has table after all the keys have been inserted using

linear probing?

http://interactivepython.org/runestone/static/pythonds/SortSearch/Hashing.html#fig-chaining

62

5. TREE DATA STRUCTURES

Very often we have to describe a group of real life objects, which have such relation to one

another that we cannot use linear data structures for their description. In this chapter, we

will give examples of such branched structures. We will explain their properties and the real

life problems, which inspired their creation and further development.

A tree-like data structure or branched data structure consists of set of elements (nodes)

which could be linked to other elements, sometimes hierarchically, sometimes not. Trees

represent hierarchies, while graphs represent more general relations such as the map of city.

Example – Hierarchy of the Participants in a Project

We have a team, responsible for the development of certain software project.

The participants in it have manager-subordinates relations. Our team consists of 9

teammates:

What is the information we can get from this hierarchy? The direct boss of the developers is

the "Team Leader", but indirectly they are subordinate to the "Project Manager". The "Team

Leader" is subordinate only to the "Project Manager". On the other hand "Developer 1" has

no subordinates. The "Project Manager" is the highest in the hierarchy and has no manager.

The same way we can describe every participant in the project. We see that such a little

figure gives us so much information.

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0025.png

63

Trees Terminology

For a better understanding of this part of the chapter we recommend to the reader at every

step to draw an analogy between the abstract meaning and its practical usage in everyday

life.

We will simplify the figure describing our hierarchy. We assume that it consists of circles

and lines connecting them. For convenience we name the circles with unique numbers, so

that we can easily specify about which one we are talking about.

We will call every circle a node and each line an edge. Nodes "19", "21", "14" are below

node "7" and are directly connected to it. This nodes we are called direct descendants

(child nodes) of node "7", and node "7" their parent. The same way "1", "12" and "31" are

children of "19" and "19" is their parent. Intuitively we can say that "21" is sibling of "19",

because they are both children of "7" (the reverse is also true – "19" is sibling of "21").For

"1", "12", "31", "23" and "6" node "7" precedes them in the hierarchy, so he is their indirect

parent – ancestor, ant they are called his descendants.

Root is called the node without parent. In our example this is node "7"

Leaf is a node without child nodes. In our example – "1", "12", "31", "21", "23" and "6".

Internal nodes are the nodes, which are not leaf or root (all nodes, which have parent and at

least one child). Such nodes are "19" and "14".

Path is called a sequence of nodes connected with edges, in which there is no repetition of

nodes. Example of path is the sequence "1", "19", "7" and "21". The sequence "1", "19" and

"23" is not a path, because "19" and "23" are not connected.

Path length is the number of edges, connecting the sequence of nodes in the path. Actually it

is equal to the number of nodes in the path minus 1. The length of our example for path

("1", "19", "7" and "21") is three.

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0042.png

64

Depth of a node we will call the length of the path from the root to certain node. In our

example "7" as root has depth zero, "19" has depth one and "23" – depth two.

Tree definition

Tree: a recursive data structure, which consists of nodes, connected with edges. The

following statements are true for trees:

- Each node can have 0 or more direct descendants (children).

- Each node has at most one parent. There is only one special node without parent –

the root (if the tree is not empty).

- All nodes are reachable from the root – there is a path from the root to each node in

the tree.

We can give more simple definition of tree: a node is a tree and this node can have zero or

more children, which are also trees.

Height of tree – is the maximum depth of all its nodes. In our example the tree height is 2.

Degree of node we call the number of direct children of the given node. The degree of "19"

and "7" is three, but the degree of "14" is two. The leaves have degree zero.

Branching factor is the maximum of the degrees of all nodes in the tree. In our example the

maximum degree of the nodes is 3, so the branching factor is 3.

Depth-First-Search (DFS) Traversal

In the class Tree<T> is implemented the method TraverseDFS(), that calls the private

method PrintDFS(TreeNode<T> root, string spaces), which traverses the tree in depth and

prints on the standard output its elements in tree layout using right displacement (adding

spaces).

The Depth-First-Search algorithm aims to visit each of the tree nodes exactly one. Such a

visit of all nodes is called tree traversal. There are multiple algorithms to traverse a tree but

in this course we will discuss only two of them: DFS (depth-first search) and BFS

(breadth-first search).

The DFS algorithm starts from a given node and goes as deep in the tree hierarchy as it can.

When it reaches a node, which has no children to visit or all have been visited, it returns to

the previous node. We can describe the depth-first search algorithm by the following simple

steps:

http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-10-recursion/#_What_Is_Recursion?
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#DFS_Traversal
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#BFS_Traversal
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#BFS_Traversal
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#BFS_Traversal

65

1. Traverse the current node (e.g. print it on the console or process it in some way).

2. Sequentially traverse recursively each of the current nodes’ child nodes (traverse the

sub-trees of the current node). This can be done by a recursive call to the same method

for each child node.

Breath-First-Search (BFS)

Let’s have a look at another way of traversing trees. Breath-First-Search (BFS) is an

algorithm for traversing branched data structures (like trees and graphs). The BFS algorithm

first traverses the start node, then all its direct children, then their direct children and so on.

This approach is also known as the wavefront traversal, because it looks like the waves

caused by a stone thrown into a lake.

The Breath-First-Search (BFS) algorithm consists of the following steps:

1. Enqueue the start node in queue Q.

2. While Q is not empty repeat the following two steps:

- Dequeue the next node v from Q and print it.

- Add all children of v in the queue.

The BFS algorithm is very simple and always traverses first the nodes that are closest to the

start node, and then the more distant and so on until it reaches the furthest. The BFS

algorithm is very widely used in problem solving, e.g. for finding the shortest path in a

labyrinth.

Binary Trees

In the previous section we discussed the basic structure of a tree. In this section we will

have a look at a specific type of tree – binary tree. This type of tree turns out to be very

useful in programming. The terminology for trees is also valid about binary trees. Despite

that below we will give some specific explanations about thus structure.

Binary Tree: a tree, which nodes have a degree equal or less than 2 or we can say that it is a

tree with branching degree of 2. Because every node’s children are at most 2, we call them

left child and right child. They are the roots of the left sub-tree and the right sub-tree of their

parent node. Some nodes may have only left or only right child, not both. Some nodes may

have no children and are called leaves.

66

Binary tree can be recursively defined as follows: a single node is a binary tree and can have

left and right children which are also binary trees.

Binary Tree – Example

Here we have an example of binary tree. The nodes are again named with some numbers.

An the figure we can see the root of the tree – "14", the left sub-tree (with root 19) and the

right sub-tree (with root 15) and a right and left child – "3" and "21".

We have to note that there is one very big difference in the definition of binary tree from the

definition of the classical tree – the order of the children of each node. The next example

will illustrate that difference:

On this figure above two totally different binary trees are illustrated – the first one has root

"19" and its left child "23" and the second root "19" and right child "23". If that was an

ordinary tree they would have been the same. That’s why such tree we would illustrate the

following way:

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0081.png
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0102.png
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0122.png

67

Binary Tree Traversal

The traversal of binary tree is a classic problem which has classical solutions. Generally

there are few ways to traverse a binary tree recursively:

- In-order (Left-Root-Right) – the traversal algorithm first traverses the left sub-tree,

then the root and last the left sub-tree. In our example the sequence of such traversal

is: "23", "19", "10", "6", "21", "14", "3", "15".

- Pre-order (Root-Left-Right) – in this case the algorithm first traverses the root, then

the left sub-tree and last the right sub-tree. The result of such traversal in our example

is: "14", "19", "23", "6", "10", "21", "15", "3".

- Post-order (Left-Right-Root) – here we first traverse the left sub-tree, then the right

one and last the root. The result after the traversal is: "23", "10", "21", "6", "19", "3",

"15", "14".

Ordered Binary Search Trees

Till this moment we have seen how we can build traditional and binary trees. These

structures are very summarized in themselves and it will be difficult for us to use them for a

bigger project. Practically, in computer science special and programming variants of binary

and ordinary trees are used that have certain special characteristics, like order, minimal

depth and others. Let's review the most important trees used in programming.

As examples for a useful properties we can give the ability to quickly search of an element

by given value (Red-Black tree); order of the elements in the tree (ordered search trees);

balanced depth (balanced trees); possibility to store an ordered tree in a persistent storage so

that searching of an element to be fast with as little as possible read operations (B-tree), etc.

Comparability between Objects

Before continuing, we will introduce the following definition, which we will need for the

further exposure.

Comparability – we call two objects A and B comparable, if exactly one of following three

dependencies exists:

- "A is less than B"

- "A is bigger than B"

- "A is equal to B"

68

Similarly we will call two keys A and B comparable, if exactly one of the following three

possibilities is true: A < B, A > B or A = B.

The nodes of a tree can contain different fields but we can think about only their unique

keys, which we want to be comparable. Let’s give an example. We have two specific nodes

A and B:

In this case, the keys of A and B hold the integer numbers 19 and 7. From Mathematics we

know that the integer numbers (unlike the complex numbers) are comparable, which

according the above reasoning give us the right to use them as keys. That’s why we can say

that ―A is bigger than B‖, because ―19 is bigger than 17‖.

And we arrive to the definition of the ordered binary search tree:

Ordered Binary Tree (binary search tree) is a binary tree, in which every node has a unique

key, every two of the keys are comparable and the tree is organized in a way that for every

node the following is satisfied:

- All keys in the left sub-tree are smaller than its key.

- All keys in the right sub-tree are bigger than its key.

Properties of the Ordered Binary Search Trees

On the figure below we have given an example of an ordered binary search tree. We will

use this example, to give some important properties of the binary tree’s order:

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0162.png
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0181.png

69

By definition we know that the left sub-tree of every node consists only of elements, which

are smaller than itself, while in the right sub-tree there are only bigger elements. This means

that if we want to find a given element, starting from the root, either we have found it or

should search it respectively in its left or its right sub-tree, which will save unnecessary

comparisons. For example, if we search 23 in our tree, we are not going to search for it in

the left sub-tree of 19, because 23 is not there for sure (23 is bigger than 19, so eventually it

is in the right sub-tree). This saves us 5 unnecessary comparisons with each of the left sub-

tree elements, but if we were using a linked list, we would have to make these 5

comparisons.

From the elements’ order follows that the smallest element in the tree is the leftmost

successor of the root, if there is such or the root itself, if it does not have a left successor. In

our example this is the minimal element 7 and the maximal – 35. Next useful property from

this is, that every single element from the left sub-tree of given node is smaller than every

single element from the right sub-tree of the same node.

Ordered Binary Search Trees – Example

The next example shows a simple implementation of a binary search tree. Our point is to

suggest methods for adding, searching and removing an element in the tree. For every single

operation from the above, we will give an explanation in details. Note that our binary search

tree is not balanced and may have poor performance in certain circumstances.

Inserting an Element

Inserting (or adding) an element in a binary search tree means to put a new element

somewhere in the tree so that the tree must stay ordered. Here is the algorithm: if the tree is

empty, we add the new element as a root. Otherwise:

- If the element is smaller than the root, we call recursively the same method to add the

element in the left sub-tree.

- If the element is bigger than the root, we call recursively to the same method to add

the element in the right sub-tree.

- If the element is equal to the root, we don’t do anything and exit from the recursion.

We can clearly see how the algorithm for inserting a node, conforms to the rule ―elements in

the left sub-tree are less than the root and the elements in the right sub-tree are bigger than

the root‖.

70

Searching for an Element

Searching in a binary search tree is an operation which is more intuitive. In the sample code

we have shown how the search of an element can be done without recursion and with

iteration instead. The algorithm starts with element node, pointing to the root. After that we

do the following:

- If the element is equal to node, we have found the searched element and return it.

- If the element is smaller than node, we assign to node its left successor, i.e. we

continue the searching in the left sub-tree.

- If the element is bigger than node, we assign to node its right successor, i.e. we

continue the searching in the right sub-tree.

At the end, the algorithm returns the found node or null if there is no such node in the tree.

Additionally we define a Boolean method that checks if certain value belongs to the tree.

Removing an Element

Removing is the most complicated operation from the basic binary search tree operations.

After it the tree must keep its order.

The first step before we remove an element from the tree is to find it. We already know how

it happens. After that, we have 3 cases:

- If the node is a leaf – we point its parent’s reference to null. If the element has no

parent, it means that it is a root and we just remove it.

- If the node has only one sub-tree – left or right, it is replacing with the root of this

sub-tree.

- The node has two sub-trees. Then we have to find the smallest node in the right sub-

tree and swap with it. After this exchange the node will have one sub-tree at most and

then we remove it grounded on some of the above two rules. Here we have to say that

it can be done analogical swap, just that we get the left sub-tree and it is the biggest

element.

We leave to the reader to check the correctness of these three steps, as a little exercise.

Now, let’s see a sample removal in action. Again we will use our ordered tree, which we

have displayed at the beginning of this point. For example, let’s remove the element with

key 11.

71

The node 11 has two sub-trees and according to our algorithm, it must be exchanged with

the smallest element from the right sub-tree, i.e. with 13. After the exchange, we can

remove 11 (it is a leaf). Here is the final result:

Balanced Trees

As we have seen above, the ordered binary trees are a very comfortable structure to search

within. Defined in this way, the operations for creating and deleting the tree have a hidden

flaw: they don't balance the tree and its depth could become very big.

Think a bit what will happen if we sequentially include the elements: 1, 2, 3, 4, 5, 6? The

ordered binary tree will look like this:

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0201.png
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image0221.png

72

In this case, the binary tree degenerates into a linked list. Because of this the searching in

this tree is going to be much slower (with N steps, not with log(N)), as to check whether an

item is inside, in the worst case we will have to go through all elements.

We will briefly mention the existence of data structures, which save the logarithmic

behavior of the operations adding, searching and removing an element in the common case.

We will introduce to you the following definitions before we go on to explain how they are

achieved:

Balanced binary tree – a binary tree in which no leaf is at ―much greater‖ depth than any

other leaf. The definition of ―much greater‖ is rough depends on the specific balancing

scheme.

Perfectly balanced binary tree – binary tree in which the difference in the left and right tree

nodes’ count of any node is at most one.

Without going in details we will mention that when given binary search tree is balanced,

even not perfectly balanced, then the operations of adding, searching and removing an

element in it will run in approximately a logarithmic number of steps even in the worst case.

To avoid imbalance in the tree to search, apply operations that rearrange some elements of

the tree when adding or removing an item from it. These operations are called rotations in

most of the cases. The type of rotation should be further specified and depends on the

implementation of the specific data structure. As examples for structures like these we can

give Red-Black tree, AVL-tree, AA-tree, Splay-tree and others.

Balanced search trees allow quickly (in general case for approximately log(n) number of

steps) to perform the operations like searching, adding and deleting of elements. This is due

to two main reasons:

- Balanced search trees keep their elements ordered internally.

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image024.png

73

- Balanced search trees keep themselves balanced, i.e. their depth is always in order of

log(n).

Due to their importance in computer science we will talk about balanced search trees and

their standard implementations in .NET Framework many times when we discuss data

structures and their performance in this chapter and in the next few chapters.

Balanced search trees can be binary or non-binary.

Balanced binary search trees have multiple implementations like Red-Black Trees, AA

Trees and AVL Trees. All of them are ordered, balanced and binary, so they perform insert

/ search / delete operations very fast.

Non-binary balanced search trees also have multiple implementations with different special

properties. Examples are B-Trees, B+ Trees and Interval Trees. All of them are ordered,

balanced, but not binary. Their nodes can typically hold more than one key and can have

more than two child nodes. These trees also perform operations like insert / search / delete

very fast.

For a more detailed examination of these and other structures we recommend the reader to

look closely at literature about algorithms and data structures.

74

6. GRAPHS

The graphs are very useful and fairly common data structures. They are used to describe a

wide variety of relationships between objects and in practice can be related to almost

everything. As we will see later, trees are a subset of the graphs and also lists are special

cases of trees and thus of graphs, i.e. the graphs represent a generalized structure that allows

modeling of very large set of real-world situations.

Frequent use of graphs in practice has led to extensive research in "graph theory", in which

there is a large number of known problems for graphs and for most of them there are well-

known solutions.

Graphs – Basic Concepts

In this section we will introduce some of the important concepts and definitions. Some of

them are similar to those introduced about the tree data structure, but as we shall see, there

are very serious differences, because trees are just special cases of graphs.

Let’s consider the following sample graph (which we would later call a finite and oriented).

Again, like with trees, we have numbered the graph, as it is easier to talk about any of them

specifically:

The circles of this scheme we will call vertices (nodes) and the arrows connecting them we

will call directed edges. The vertex of which the arrow comes out we will call predecessor

of that the arrow points. For example ―19‖ is a predecessor of ―1‖. In this case, ―1‖ is a

successor of ―19‖. Unlike the structure tree, here each vertex can have more than one

http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#Tree_Data_Structure
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image026.png

75

predecessor. Like ―21‖, it has three – ―19‖, ―1‖ and ―7‖. If two of the vertices are connected

with edge, then we say these two vertices are adjacent through this edge.

Finite directed graph.

Finite directed graph is called the couple (V, E), in which V is a finite set of vertices and E

is a finite set of directed edges. Each edge e that belongs to E is an ordered couple of

vertices u and v or e = (u, v), which are defining it in a unique way.

For better understanding of this definition we are strongly recommending to the reader to

think of the vertices as they are cities, and the directed edges as one-way roads. That way, if

one of the vertices is Sofia and the other is Paris, the one-way path (edge) will be called

Sofia – Paris. In fact this is one of the classic examples for the use of the graphs – in tasks

with paths.

If instead of arrows, the vertices are connected with segments, then the segments will be

called undirected edges, and the graph – undirected. Practically we can imagine that an

undirected edge from vertex A to vertex B is two-way edge and equivalent to two opposite

directed edges between the same two vertices:

Two vertices connected with an edge are called neighbors (adjacent).

For the edges a weight function can be assigned, that associates each edge to a real number.

These numbers we will call weights (costs). For examples of the weights we can mention

some distance between neighboring cities, or the length of the directed connections between

two neighboring cities, or the crossing function of a pipe, etc. A graph that has weights on

the edges is called weighted. Here is how it is illustrated a weighted graph.

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image028.png

76

Path in a graph is a sequence of vertices v1, v2, …, vn,, such as there is an edge from vi to

vi+1 for every i from 1 to n-1. In our example path is the sequence "1", "12", "19", "21". "7",

"21" and "1" is not a path because there is no edge starting from "21" and ending in "1".

Length of path is the number of edges connecting vertices in the sequence of the vertices in

the path. This number is equal to the number of vertices in the path minus one. The length

of our example for path "1", "12", "19", "21" is three.

Cost of path in a weighted graph, we call the sum of the weights (costs) of the edges

involved in the path. In real life the road from Sofia to Madrid, for example, is equal to the

length of the road from Sofia to Paris plus the length of the road from Madrid to Paris. In

our example, the length of the path "1", "12", "19" and "21" is equal to 3 + 16 + 2 = 21.

Loop is a path in which the initial and the final vertex of the path match. Example of

vertices forming loop are "1", "12" and "19". In the same time "1", "7" and "21" do not form

a loop.

Looping edge we will call an edge, which starts and ends in the same vertex. In our example

the vertex "14" is looped.

A connected undirected graph we call an undirected graph in which there is a path from

each node to each other. For example, the following graph is not connected because there is

no path from "1" to "7".

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image030.png

77

So we already have enough knowledge to define the concept tree in other way, as a special

kind of graph:

Tree – undirected connected graph without loops.

As a small exercise we let the reader show why all definitions of tree we gave in this chapter

are equivalent.

Graphs – Presentations

There are a lot of different ways to present a graph in the computer programming. Different

representations have different properties and what exactly should be selected depends on the

particular algorithm that we want to apply. In other words – we present the graph in a way,

so that the operations that our algorithm does on it to be as fast as possible. Without falling

into greater details we will set out some of the most common representations of graphs.

- List of successors – in this representation for each vertex v a list of successor

vertices is kept (like the tree’s child nodes). Here again, if the graph is weighted,

then to each element of the list of successors an additional field is added indicating

the weight of the edge to it.

- Adjacency matrix – the graph is represented as a square matrix g[N][N], where if

there is an edge from vi to vj, then the position g[i][j] is contains the value 1. If such

an edge does not exist, the field g[i][j] is contains the value 0. If the graph is

weighted, in the position g[i][j] we record weight of the edge, and matrix is called a

matrix of weights. If between two nodes in this matrix there is no edge, then it is

recorded a special value meaning infinity. If the graph is undirected, the adjacency

matrix will be symmetrical.

- List of the edges – it is represented through the list of ordered pairs (vi, vj), where

there is an edge from vi to vj. If the graph is weighted, instead ordered pair we have

ordered triple, and its third element shows what the weight of the edge is.

http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#Tree_Data_Structure
http://www.introprogramming.info/english-intro-csharp-book/read-online/chapter-17-trees-and-graphs/#Tree_Data_Structure
http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image032.png

78

- Matrix of incidence between vertices and edges – in this case, again we are using a

matrix but with dimensions g[M][N], where N is the number of vertices, and M is the

number of edges. Each column represents one edge, and each row a vertex. Then the

column corresponding to the edge (vi, vj) will contain 1 only at position i and position

j, and other items in this column will contain 0. If the edge is a loop, i.e. is (vi, vi),

then on position i we record 2. If the graph we want to represent is oriented and we

want to introduce edge from vi to vj, then to position i we write 1 and to the position j

we write -1.

The most commonly used representation of graphs is the list of successors.

Graphs – Basic Operations

The basic operations in a graph are:

- Creating a graph

- Adding / removing a vertex / edge

- Check whether an edge exists between two vertices

- Finding the successors of given vertex

We will offer a sample implementation of the graph representation with a list of successors

and we will show how to perform most of the operations. This kind of implementation is

good when the most often operation we need is to get the list of all successors (child nodes)

for a certain vertex. This graph representation needs a memory of order N + M where N is

the number of vertices and M is the number of edges in the graph.

In essence the vertices are numbered from 0 to N-1 and our Graph class holds for each

vertex a list of the numbers of all its child vertices. It does not work with the nodes, but with

their numbers in the range [0...N-1].

By definition in undirected graph if a path exists between two nodes, they belong to the

same connected component and if no path exists between two nodes, they belong to

different connected components. For example consider the following undirected graph:

It has 3 connected components: {0, 4}, {1, 2, 6, 3} and {5}.

http://www.introprogramming.info/wp-content/uploads/2013/07/clip_image034.png

79

Common Graph Applications

Graphs are used to model many situations of reality, and tasks on graphs model multiple

real problems that often need to be resolved. We will give just a few examples:

- Map of a city can be modeled by a weighted oriented graph. On each street, edge is

compared with a length, corresponding to the length of the street, and direction – the

direction of movement. If the street is a two-way, it can be compared to two edges in

both directions. At each intersection there is a node. In such a model there are natural

tasks such as searching for the shortest path between two intersections, checking

whether there is a road between two intersections, checking for a loop (if we can turn

and go back to the starting position) searching for a path with a minimum number of

turns, etc.

- Computer network can be modeled by an undirected graph, whose vertices

correspond to the computers in the network, and the edges correspond to the

communication channels between the computers. To the edges different numbers can

be compared, such as channel capacity or speed of the exchange, etc. Typical tasks for

such models of a network are checking for connectivity between two computers,

checking for double-connectivity between two points (existence of double-secured

channel, which remains active after the failure of any computer), finding a minimal

spanning tree (MST), etc. In particular, the Internet can be modeled as a graph, in

which are solved problems for routing packets, which are modeled as classical graph

problems.

- The river system in a given region can be modeled by a weighted directed graph,

where each river is composed of one or more edges, and each node represents the

place where two or more rivers flow into another one. On the edges can be set values,

related to the amount of water that goes through them. Naturally with this model there

are tasks such as calculating the volume of water, passing through each vertex and

anticipate of possible flood in increasing quantities.

You can see that the graphs can be used to solve many real-world problems. Hundreds of

books and research papers are written about graphs, graph theory and graph algorithms.

There are dozens of classic tasks for graphs, for which there are known solutions or it is

known that there is no efficient solution.

80

CHAPTER 4: ANALYSIS OF ALGORITHM

What is an algorithm?

An algorithm is any well-defined computational procedure that takes some value, or set of

values, as input and produces some value, or set of values, as output. An algorithm is thus a

sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem.

The statement of the problem specifies in general terms the desired input/output

relationship. The algorithm describes a specific computational procedure for achieving that

input/output relationship.

 An algorithm is said to be correct if, for every input instance, it halts with the correct

output. We say that a correct algorithm solves the given computational problem. An

incorrect algorithm might not halt at all on some input instances, or it might halt with other

than the desired answer. Contrary to what one might expect, incorrect algorithms can

sometimes be useful, if their error rate can be controlled. Concerned only with correct

algorithms. An algorithm can be specified in English, as a computer program, or even as

hardware

4.1 Algorithmic Complexity

Algorithmic complexity is concerned about how fast or slow particular algorithm performs.

We define complexity as a numerical function T(n) - time versus the input size n. We want

to define time taken by an algorithm without depending on the implementation details. But

you agree that T(n) does depend on the implementation! A given algorithm will take

different amounts of time on the same inputs depending on such factors as: processor speed;

instruction set, disk speed, brand of compiler and etc. The way around is to estimate

efficiency of each algorithm asymptotically. We will measure time T(n) as the number of

elementary "steps" (defined in any way), provided each such step takes constant time.

Let us consider two classical examples: addition of two integers. We will add two integers

digit by digit (or bit by bit), and this will define a "step" in our computational model.

Therefore, we say that addition of two n-bit integers takes n steps. Consequently, the total

computational time is T(n) = c * n, where c is time taken by addition of two bits. On

different computers, additon of two bits might take different time, say c1 and c2, thus the

81

additon of two n-bit integers takes T(n) = c1 * n and T(n) = c2* n respectively. This shows

that different machines result in different slopes, but time T(n) grows linearly as input size

increases.

The process of abstracting away details and determining the rate of resource usage in terms

of the input size is one of the fundamental ideas in computer science.

Asymptotic Notations

The goal of computational complexity is to classify algorithms according to their

performances. We will represent the time function T(n) using the "big-O" notation to

express an algorithm runtime complexity. For example, the following statement

T(n) = O(n
2
)

says that an algorithm has a quadratic time complexity.

Definition of "big Oh"

For any monotonic functions f(n) and g(n) from the positive integers to the positive integers,

we say that f(n) = O(g(n)) when there exist constants c > 0 and n0 > 0 such that

f(n) ≤ c * g(n), for all n ≥ n0

Intuitively, this means that function f(n) does not grow faster than g(n), or that function g(n)

is an upper bound for f(n), for all sufficiently large n→∞

Here is a graphic representation of f(n) = O(g(n)) relation:

Examples:

82

 1 = O(n)

 n = O(n
2
)

 log(n) = O(n)

 2 n + 1 = O(n)

The "big-O" notation is not symmetric: n = O(n
2
) but n

2
 ≠ O(n).

Exercise. Let us prove n
2
 + 2 n + 1 = O(n

2
). We must find such c and n0 that n

2
 + 2 n + 1 ≤

c*n
2
. Let n0=1, then for n ≥ 1

1 + 2 n + n
2
 ≤ n + 2 n + n

2
 ≤ n

2
 + 2 n

2
+ n

2
 = 4 n

2

Therefore, c = 4.

Constant Time: O(1)

An algorithm is said to run in constant time if it requires the same amount of time regardless

of the input size. Examples:

 array: accessing any element

 fixed-size stack: push and pop methods

 fixed-size queue: enqueue and dequeue methods

Linear Time: O(n)

An algorithm is said to run in linear time if its time execution is directly proportional to the

input size, i.e. time grows linearly as input size increases. Examples:

 array: linear search, traversing, find minimum

 ArrayList: contains method

 queue: contains method

Logarithmic Time: O(log n)

An algorithm is said to run in logarithmic time if its time execution is proportional to the

logarithm of the input size. Example:

 binary search

83

Recall the "twenty questions" game - the task is to guess the value of a hidden number in an

interval. Each time you make a guess, you are told whether your guess is too high or too

low. Twenty questions game imploies a strategy that uses your guess number to halve the

interval size. This is an example of the general problem-solving method known as binary

search:

locate the element a in a sorted (in ascending order) array by first comparing a with the

middle element and then (if they are not equal) dividing the array into two subarrays; if a is

less than the middle element you repeat the whole procedure in the left subarray, otherwise -

in the right subarray. The procedure repeats until a is found or subarray is a zero dimension.

Note, log(n) < n, when n→∞. Algorithms that run in O(log n) does not use the whole input.

Quadratic Time: O(n
2
)

An algorithm is said to run in logarithmic time if its time execution is proportional to the

square of the input size. Examples:

 bubble sort, selection sort, insertion sort

Definition of "big Omega"

We need the notation for the lower bound. A capital omega Ω notation is used in this case.

We say that f(n) = Ω(g(n)) when there exist constant c that f(n) ≥ c*g(n) for for all

sufficiently large n. Examples

 n = Ω(1)

 n
2
 = Ω(n)

 n
2
 = Ω(n log(n))

 2 n + 1 = O(n)

Definition of "big Theta"

To measure the complexity of a particular algorithm, means to find the upper and lower

bounds. A new notation is used in this case. We say that f(n) = Θ(g(n)) if and only f(n) =

O(g(n)) and f(n) = Ω(g(n)). Examples

 2 n = Θ(n)

84

 n
2
 + 2 n + 1 = Θ(n

2
)

Analysis of Algorithms

The term analysis of algorithms is used to describe approaches to the study of the

performance of algorithms. In this course we will perform the following types of analysis:

 The worst-case runtime complexity of the algorithm is the function defined by the

maximum number of steps taken on any instance of size a.

 The best-case runtime complexity of the algorithm is the function defined by the

minimum number of steps taken on any instance of size a.

 The average case runtime complexity of the algorithm is the function defined by an

average number of steps taken on any instance of size a.

 The amortized runtime complexity of the algorithm is the function defined by a

sequence of operations applied to the input of size a and averaged over time.

Example. Let us consider an algorithm of sequential searching in an array of size n.

Its worst-case runtime complexity is O(n)

Its best-case runtime complexity is O(1)

Its average case runtime complexity is O(n/2)=O(n)

4.2 How to Design Algorithms

Creating an algorithm design is an art, which may never be fully automated. Various

algorithm design techniques that have proven to be useful in that they have often yielded

good algorithms. By mastering these design strategies, it will become easier for you to

devise new and useful algorithms. Algorithm is a method for solving a computational

problem and algorithm design is identified in many solution theories of operation research,

such as divide and conquer, dynamic programming and greedy algorithm.

The Techniques for designing and implementing algorithm design is based on

template method patterns, data structures etc. A Design technique is often expressed in

pseudocode as a template that can be particularized for concrete problems [3]. This

template name is algorithm schemas. Algorithm schemas consist on identifying structural

similarities among algorithms that solve different problems. Programming language such

as algorithmic language, COBOL, FORTRAN, PASCAL, SAIL are computing tools to

85

implement an algorithm design. But algorithm design is not a programming tool.

Algorithm design basically mathematical process of writing a finite set of steps each of

which may require one or more operations.

4.3 How to Express Algorithms

Algorithm design can be expressed in many kinds of notation like flowcharts,

programming language, rational rose tool, computer aided design applications and

pseudocode etc. flowcharts and rational rose are expressed in structured way and

avoid the ambiguities in language statements. Computer-Aided Design (CAD), also known

as Computer-Aided Drafting, is the use of computer software and systems to design and

create 2D and 3D virtual models of goods and products for the purposes of testing. It is also

sometimes referred to as computer assisted drafting. Programming languages are primarily

intended for expressing algorithms in a form that can be executed by a computer, but

are often used as a way to define or document algorithms.

4.4 Fundamental Concepts of Algorithm

There are two fundamental concepts of algorithm

 Functional correctness

 Proof of correctness

4.4.1 Functional Correctness

Functional correctness is depend on the following

 Precondition: Algorithm is correct if every data that satisfy some condition

that is called precondition of the algorithm

 Post condition: The out put data satisfy a certain predefined condition that is

called post condition of the algorithm.

4.4.2 Proofs of Correctness of Algorithms

Correctness of algorithm is depends on the two issues

 Given an algorithm prove that it is correct. It is always achieves the intended

result

86

 Design an algorithm with intended properties from scratch. This is even more

difficult.

Proof of correctness also depends on the mathematical proof. Whenever algorithm is run on

a set of inputs that satisfy the problems precondition is expected to hold before the method

is executed. Post condition what holds after the method is executed. A proof that a program

is correct often has two pieces (that can be developed separately)

 Proof of partial correctness: This is a proof that, whenever an algorithm is

run on a set of inputs satisfying the problem’s precondition, either

o The algorithm halts, and the outputs (and inputs) satisfy the problem’s

post condition, or

o The algorithm does not halt at all.

 Proof of termination: This is a proof that the algorithm always halts,

whenever it is run on a set of inputs that satisfy the precondition.

4.5 FUNDAMENTAL ALGORITHMS STRATEGIES

4.5.1 Brute Force Algorithms

Definition: An algorithm that inefficiently solves a problem, often by trying every one

of a wide range of possible solutions

Main Approach

 Generate and evaluate possible solutions until

o Satisfactory solution is found.

o Best solution is found.

o All possible solutions found

 Return best solution

 Return failure if no satisfactory solution.

 Generally most expensive approach.

Description

A brute force algorithm simply tries all possibilities until a satisfactory solution is

found such an algorithm can be:

87

 Optimizing: Find the best solution. This may require finding all solutions, or

if a value for the best solution is known, it may stop when any best solution is

found

 Satisfying: Stop as soon as a solution is found that is good enough

Brute force algorithm is require exponential time and used in various heuristics and

optimizations.

Heuristic: A rule of thumb that helps you decide which possibilities to look at first.

Optimization: In this case, to eliminate certain possibilities without fully exploring

them.

The C code

Void BF (char *x, int m, char *y, int n) {

int i, j;

/* Searching */

for (j = 0; j <= n - m; ++j)

{

}

Strengths:

for (i = 0; i < m && x[i] == y[i + j]; ++i);

if (i >= m)

OUTPUT(j);

 Wide applicability

 Simplicity

 Yields reasonable algorithms for some important problems

o Searching, string matching, matrix multiplication

 Yields standard algorithms for simple computational tasks

o Sum or product of n numbers, finding max or min in a list

Weaknesses:

 Rarely yields efficient algorithms

 Some brute force algorithms unacceptably slow

 Not as constructive/creative as some other design techniques

88

Example 1: Traveling salesman problem

Question: Given n cities with known distances between each pair, find the shortest

tour that passes through all the cities exactly once before returning to the starting city.

Example:

2

a b

5 3

8 4

c
7

d

Tour

a→b→c→d→a

Cost
2+3+7+5 = 17

 a→b→d→c→a 2+4+7+8 = 21

 a→c→b→d→a 8+3+4+5 = 20

 a→c→d→b→a 8+7+4+2 = 21

 a→d→b→c→a 5+4+3+8 = 20

 a→d→c→b→a 5+7+3+2 = 17

89

4.5.2 Greedy Algorithm

The greedy algorithm is perhaps the most straightforward design technique. It can be

applied to a wide variety of problem. Most though not all of these problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any need to

find a feasible solution that either maximizes or minimizes a given objective function.

A feasible solution that does this is called an optimal solution.

Note: greedy algorithm avoid backtracking and exponential time O(2
n

)

Greedy algorithms work in phases. In each phase, a decision is made that appears to

be good, without regard for future consequences E.g. Kruskal’s MST algorithm,

Dijkstra’s algorithm.

Definition

Greedy algorithm work in phases. In each phase, a decision is made that appears to be

good, without regard for future consequences. Generally, this means that some local

optimum is chosen. Greedy algorithm to find minimum spanning tree. Want to find

set of edges.

Note: Prim’s algorithm and Kruskal’s algorithm are greedy algorithms that find the

globally optimal solution, a minimum spanning tree. In contrast, any known greedy

algorithm to find a Hamiltonian cycle might not find the shortest path, that is, a

solution to the traveling salesman problem. If there is no greedy algorithm that always

finds the optimal solution for a problem, one may have to search (exponentially)

many possible solutions to find the optimum. Greedy algorithms are usually quicker,

since they don’t consider the details of possible alternatives

90

Type of Greedy Algorithm

There are three type of greedy algorithms

 Pure Greedy Algorithms

 Orthogonal Greedy Algorithms

 Relaxed Greedy Algorithms

General Characteristics of Greedy Algorithms

Commonly, greedy algorithms and the problems they can solve are characterized by

most or all of the following features.

 To construct the solution of our problem, a set (or list) of candidates is

required: the coins that are available, the edges of a graph that may be used to

build a path, the set of jobs to be Scheduled, or whatever.

 As the algorithm proceeds, two other sets are accumulated. One contains

candidates that have already been considered and chosen, while the other

contains candidates that have been considered and rejected.

 There is a function that checks whether a particular set of candidates provides

a solution to our problem, ignoring questions of optimality for the time being.

For instance, do the coins add up to the amount to be paid? Do the selected

edges provide a path to the node to reach? Have all the jobs been scheduled?

 A second function checks whether a set of candidates is feasible, that is,

whether or not it is possible to complete the set by adding further candidates

so as to obtain at least one solution to our problem. Here too, the time being

concerned is not with optimal1ty.

 Yet another function, the selection function, indicates at any time which of the

remaining candidates, that have neither been chosen nor rejected, is the most

promising.

 Finally an objective function gives the value of a solution found: the number

of coins used to make change, the length of the path constructed, the time

needed to process all the jobs in the schedule, or whatever other values are

trying to optimize. Unlike the three functions mentioned previously, the

objective function does not appear explicitly in the greedy algorithm.

91

Example: - Scheduling

Given jobs j1, j2, j3, ..., jn with known running times t1, t2, t3, ..., tn. what is the best

way to schedule the jobs to minimize average completion time?

Job Time

J1 16

J2 8

J3 3

J4 14

Scheduling

J1 J2 J3 J4

 16 24 27 41

Average completion time = (16+24+27+41)/4 = 27

J3 J2 J4 J1

 3 11 25 41

Average completion time = (3+11+25+41)/4 = 20

Description

 Greedy-choice property: if shortest job does not go first, the y jobs before it

will complete 3 time units faster, but j3 will be postponed by time to complete

all jobs before it

 Optimal substructure: if shortest job is removed from optimal solution,

remaining solution for n-1 jobs is optimal

Optimality Proof

•Total cost of a schedule is

N

∑(N-k+1)tik

k=1

t1 + (t1+t2) + (t1+t2+t3) ... (t1+t2+...+tn)

N

(N+1)∑tik - ∑k*tik

92

k=1

•First term independent of ordering, as second term increases, total cost becomes

smaller

Suppose there is a job ordering such that x > y and tix < tiy Swapping jobs (smaller

first) increases second term decreasing total cost

Show: xtix + ytiy < ytix + xtiy

xtix + ytiy = xtix + ytix + y(tiy - tix)

= ytix + xtix+ y(tiy - tix)

< ytix + xtix+ x(tiy - tix)

= ytix + xtix+ xtiy - xtix = ytix + xtiy

4.5.3 Divide and Conquer

Divide and conquer algorithm suggests splitting the inputs into distinct subsets. These

sub problems must be solved and then a method must be found to combine sub

solutions into a solution of the whole. If the sub problems are still relatively large,

then the divide and conquer strategy can be possibly be reapplied. Often the sub

problems resulting from a divide and conquer design are of the same type as the

original problem. For those cases the reapplication of the divide and conquer principle

is naturally expressed by a recursive algorithm. This algorithm technique is the basis

of efficient algorithms for all kinds of the problems, such as quick sort, merge sort

and discrete Fourier transform. Its application to numerical algorithms is commonly

known as binary splitting .

Divide-and-conquer algorithm works as follows:

 Divide and conquer algorithm are divided into several smaller instances of the

same problem and same size.

 The smaller instances are solved by recursively.

o Sometimes, a different algorithm is applied when instances become

small enough.

 The smaller instances are combined and to get a solution to the original

problem.

o No necessary to combine in some cases.

93

 Divide-and-conquer technique is ideally suited for parallel computers, in

which each sub problem can be solved simultaneously by its own processors.

 Common case: Dividing a problem into two smaller problems

Algorithm of Divide and Conquer

1. Algorithm D-and-C (n: input size)

2. If n ≤ n0 /* small size problem*/

3. Solve problem without further sub-division;

4. Else

5. Divide into m sub-problems;

6. Conquer the sub-problems by solving them

7. Independently and recursively; /* D-and-C (n/k) */

8. Combine the solutions;

Examples:

o Binary search

o Powering a number

o Fibonacci numbers

o Matrix multiplication

o Strassen’s algorithm

o VLSI tree layout

Divide and Conquer

Divide: P => P1,…………….Pk

Conquer: S (P1),……………...S (Pk)

Merge: S (P1),………………., S (Pk)=> S(P)

Examples: Sorting (merge sort and quick sort), searching (binary search), closest pair

(the O (n log n) algorithm), and selection (the linear-time algorithm).

Algorithm template:

 Function P(n)

 if n <=c

 Solve P directly

 Return its solution

94

 Else P => P1, ..., Pk //divide

 For i = 1 to k

 Si = P(ni) //conquer

 S1, ..., Sk => S //merge

 return S

Time complexity:

Strassen’s algorithm

-Given A=(aij) nxn and B=(bij) nxn.

– First algorithm:

for i = 1 to n

for j = 1 to n

c[i,j] = 0

for k = 1 to n

c[i,j] = c[i,j] + a[i,k] * b[k,j]

Time complexity: O (n
3
)

- Second algorithm:

C11 = A11 B11+ A12 B21

C12 = A11 B12 + A12 B22

C21=A21 B11 + A22 B21

C22 =A21 B12 +A22 B22

95

So the multiplication of two n x n matrices becomes eight multiplications of two n/2 x

n/2 matrices, giving us T (n)=8T(n/2) +O (n
2
). By iterating, we have T (n)=O (n

3
).

No improvement!

M1 (A12 –A22) (B21 +B22)

M2 (A11 + A22) (B11 + B22)

M3 (A11 – A21) (B11 + B12)

M4 (A11 + A 12) B22

M5 A11 (B12 – B22)

M6 A22 (B21 – B11)

M7 (A21 + A 22) B11

C11 M1 – M2 - M4 + M6

C12 M4 + M5

C21 M6 + M7

C22 M2 – M3 + M5 - M7

Using the above idea in the algorithm, we get

T (n) = 7T(n/2)+O(n
2
), thus T(n) = O(n

log7
) =

O(n
2.81

) By iterating

96

Problem of size n

Subproblem1 of

size n/2

Subproblem2 of

size n/2

Solution to sub problem 1 Solution to sub problem 2

Solution to the original

Problem

Figure 2.1 Divide and Conquer

4.5.4 Dynamic programming

Dynamic programming is an algorithm design method that can be used when the

solution to a problem can be viewed as the result of a sequence of decisions. Dynamic

programming is a similar to divide and conquer algorithm. It is express solution of a

problem in terms of solutions to sub problems. The Key difference is between

dynamic programming and divide and conquer is that while sub problems in divide

and conquer are independent, sub problems in dynamic programming may them

selves share sub problems. This means that if these were treated as independent sub

problems, the complexity would be higher. Dynamic programming is typically used to

solve optimization problems. In bioinformatics, the most common use of dynamic

programming is in sequence matching and alignment.

 To begin, the word programming is used by mathematicians to describe a set

of rules, which must be followed to solve a problem.

 Thus, linear programming describes sets of rules which must be solved a

linear problem.

 In our context, the adjective dynamic describes how the set of rules works.

 In this course, a number of examples of recursive algorithms are seen.

97

 The run time of these algorithms may be found by solving the recurrence

relation itself.

 The first example of a dynamic program is a technique for solving the

following recurrence relation [9].

 1

Fn

1

n 0

n 1

Fn 1 Fn 2 n 1

 You will recall that this defines the Fibonacci sequence of integers:

1, 1, 2, 3, 5, 8, 13, 21, 33, 54,...

Example

// Calculate the nth Fibonacci number

Double F(double n) {

if (n <= 1) {

return 1.0;

} else {

return F(n – 1) + F(n – 2);

}

}

 Recall definition of Fibonacci numbers: f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2)

 Compute the nth Fibonacci number recursively (top-down)

f(n)

f(n-1) + f(n-2)

f(n-2) + f(n-3) f(n-3) + f(n-4)

Example: Fibonacci numbers (2)

Compute the nth Fibonacci number using bottom-up iteration:

1. F (0) = 0

2. F (1) = 1

3. F (2) = 0+1 = 1

98

4. F (3) = 1+1 = 2

5. F (4) = 1+2 = 3

6. F (n-2) =

7. F (n-1) =

8. F (n) = f (n-1) + f (n-2)

Example: Computing binomial coefficients

Algorithm Based On Identity

 Algorithm Binomial (n,k)

for i <- 0 to n do

1. for j <-0 to min(j,k) do

2. if j=0 or j=i then C[i,j] ß 1

3. else C[i,j]ßC[i-1,j-1]+C[i-1,j]

4. return C[n,k]

 Pascal’s Triangle

4.5.5 Backtracking Algorithm

Backtracking algorithm represents one of the most general techniques. Many

problems which deal with searching for a set of solutions or which ask for an optimal

solution satisfying some constraints can be solved using the backtracking formulation.

Many of the problems being solved using backtracking require that all the solutions

satisfy a complex set of constraints. For any problem these constraints can be divided

into two categories explicit and implicit.

 View the problem as a sequence of decisions

 Systematically considers all possible outcomes for each decision

 Backtracking algorithms are like the brute-force algorithms

 However, they are distinguished by the way in which the space of possible

solutions is explored

 Sometimes a backtracking algorithm can detect that an exhaustive search is

not needed

Example: - Solving a maze

 Given a maze, find a path from start to finish

99

 At each intersection, you have to decide between three or fewer choices:

o Go straight

o Go left

o Go right

 You don’t have enough information to choose correctly

 Each choice leads to another set of choices

 One or more sequences of choices may (or may not) lead to a solution

 Many types of maze problem can be solved with backtracking

Solving a puzzle

 In this puzzle, all holes but one are filled with white pegs

 You can jump over one peg with another

 Jumped pegs are removed

 The object is to remove all but the last peg

 You don’t have enough information to jump correctly

 Each choice leads to another set of choices

 One or more sequences of choices may (or may not) lead to a solution

 Many kinds of puzzle can be solved with backtracking

Figure 2.2 Puzzle Problem

4.5.6 Branch and Bound Algorithms

Branch and Bound Algorithm based on limiting search using current solution. It

means this is a general search method. This method considering the root problem and

lower bounding and upper bounding procedures are applied to the root problem.

Branch and bound algorithm is applied recursively to the sub problem. If an optimal

100

solution is found to a sub problem, it is a feasible solution to the full problem, but not

necessarily globally optimal.

Branch and Bound Algorithm Approach

 Firstly try to track best current solution found

 The partial current solutions that can’t be improved that should be eliminated.

 Reduces amount of backtracking

Note: Not guaranteed to avoid exponential time O (2
n
)

Basic features of Branch and Bound Algorithm

Best solution is only compared with a nodes bound values only if the bound value us

not better then the best solution so far there are following reasons

 The value of the node bound is not better than the other

 Node does not represent the feasible solutions

 The node consists of a single point represent the subset of feasible solutions.

Example: Assignment Problem

Assigning n people to n jobs so that the total cost is minimized. Each person

does one job and each job is assigned to one person.

Read the assignments as <Job 1, Job 2, Job 3, Job 4>:

<c,b,a,d> assigns Person c Job 1, Person b Job 2, etc.

 Job 1 Job2 Job3 Job4

3 2 7 8 Person a

6

4

3

7

Person b

C=

5

8

1

8

Person c

7

6

9

4

Person d

<a,b,c,d> cost =3+4+1+4=12

<a,b,d,c> cost=3+4+9+8=24

<a,d,b,c> cost=3+6+4+8=21

<d,a,b,c> cost=7+2+3+8=20

101

<d,c,b,a> cost =7+8+3+8=26

Etc. totaling 4! Permutations.

Permutations: Generate n! Permutations. The following prints all the costs of the n!

Job assignments

All permutations algorithm - this is a simple algorithm just to

generate all n! Permutations

Assumes: person <- a + 1 => person = b

Initially, X[a..d] is unassigned any Job.

Permutations(X[a..d], person)

1. if person = d then print cost(X) -- Bottom of space

2. else

3. for Job {1, 2, 3, 4 } do

4. if not assigned(X, Job)

5. X[person+1] <-Job -- Assign person a job

6. Permutations(X[a..d], person+1)

7. X[person+1] <- Φ -- Unassign job

Cost (X) returns cost of assigning Job 1..4 to person a..d

Assigned (X, Job) returns true if Job is assigned person a..d

The resulting state-space for assigning Jobs {1, 2, 3, 4} to each person {a, b, c, d} is:

Figure 2.3 Branch and bound Assignment problem

102

 Job 1 Job2 Job3 Job4

3 2 7 8 Person a

6

4

3

7

Person b

C=

5

8

1

8

Person c

7

6

9

4

Person d

From the table above, the rightmost branch <d, c, b, a>, cost=7
d1

+ 8
c2

+ 3
b3

+

8
a4

=26

Example: 4-queens problem

Examples: a) Longest Common Subsequence (LCS)

Given two sequences x[1 . . m]and y[1 . . n], find a longest subsequence

common to them both.

b) Optimal Substructure

Figure 2.4 Optimal Substructure

4.5.7 Decrease-And-Conquer algorithm

Decrease-and-conquer is an approach to solving a problem by:

 Change an instance into one smaller instance of the problem.

 Solve the small instance.

 Convert the solution of the small instance into a solution for the large instance.

Decrease by a Constant

Decrease-by-a constant decreases the instance size by 1 (or some other constant), e.g.,

210 = 2 ∗ 29

103

Problem of size n

Sub Problem

Of size n-1

Solution to the sub problem

Solution to the original problem

Figure 2.5 Decrease-And-Conquer algorithm

Decrease by a Constant Factor

Decrease-by-a constant-factor decreases the instance size by half (or some other

fraction), e.g., 210 = 25 ∗ 25.

Problem of size n

Sub problem of

Size n/2

Solution to the sub problem

Solution to the original problem

Figure 2.6 Decrease by a constant factor

Comments on Insertion Sort

 Insertion sort ensures A[0] ≤ A[1] ≤ . . . ≤ A[i − 1].

 Insertion sort looks for correct position for A[i].

104

 Insertion sort shifts values at and above correct position.

 Worst Case: The number of comparisons

 Best Case: n − 1 ∈ (n) comparisons if array is already sorted.

 Average Case ≈ n2/4 comparisons.

4.6 GRAPH AND TREE ALGORITHMS

Graph Traversal

Graph traversal algorithms process all the vertices of a graph in a systematic fashion.

 They are useful for many graph problems such as checking connectivity,

checking a cyclicity, connected components, finding articulation points, and

topological sorting.

 First all the vertices are marked as unvisited.

 Then an unvisited vertex is selected, marked as visited, and all unvisited

vertices reachable from that vertex are marked as visited.

 Repeat above step until all vertices are visited.

4.6.1 Depth-first search (DFS) for undirected graphs

Depth-first search, or DFS, is a way to traverse the graph. Initially it allows visiting vertices of

the graph only, but there are hundreds of algorithms for graphs, which are based on DFS.

Therefore, understanding the principles of depth-first search is quite important to move ahead

into the graph theory. The principle of the algorithm is quite simple: to go forward (in depth)

while there is such possibility, otherwise to backtrack.

Algorithm

In DFS, each vertex has three possible colors representing its state:

105

white: vertex is unvisited;

gray: vertex is in progress;

black: DFS has finished processing the vertex.

NB. For most algorithms boolean classification unvisited / visited is quite enough, but we show

general case here.

Initially all vertices are white (unvisited). DFS starts in arbitrary vertex and runs as follows:

1. Mark vertex u as gray (visited).

2. For each edge (u, v), where u is white, run depth-first search for u recursively.

3. Mark vertex u as black and backtrack to the parent.

Example. Traverse a graph shown below, using DFS. Start from a vertex with number 1.

Source graph.

Mark a vertex 1 as gray.

There is an edge (1, 4) and a vertex 4 is unvisited. Go there.

106

Mark the vertex 4 as gray.

There is an edge (4, 2) and vertex a 2 is unvisited. Go there.

Mark the vertex 2 as gray.

There is an edge (2, 5) and a vertex 5 is unvisited. Go there.

Mark the vertex 5 as gray.

There is an edge (5, 3) and a vertex 3 is unvisited. Go there.

107

Mark the vertex 3 as gray.

There are no ways to go from the vertex 3. Mark it as black and

backtrack to the vertex 5.

There is an edge (5, 4), but the vertex 4 is gray.

There are no ways to go from the vertex 5. Mark it as black and

backtrack to the vertex 2.

There are no more edges, adjacent to vertex 2. Mark it as black and

backtrack to the vertex 4.

There is an edge (4, 5), but the vertex 5 is black.

108

There are no more edges, adjacent to the vertex 4. Mark it as black and

backtrack to the vertex 1.

There are no more edges, adjacent to the vertex 1. Mark it as black.

DFS is over.

As you can see from the example, DFS doesn't go through all edges. The vertices and edges,

which depth-first search has visited is a tree. This tree contains all vertices of the graph (if it is

connected) and is called graph spanning tree. This tree exactly corresponds to the recursive calls

of DFS.

If a graph is disconnected, DFS won't visit all of its vertices. For details, see finding connected

components algorithm.

Complexity analysis

Assume that graph is connected. Depth-first search visits every vertex in the graph and checks

every edge its edge. Therefore, DFS complexity is O(V + E). As it was mentioned before, if an

adjacency matrix is used for a graph representation, then all edges, adjacent to a vertex can't be

found efficiently, that results in O(V
2
) complexity.

C++ code

enum VertexState { White, Gray, Black };

 …

 void Graph::DFS() {

 VertexState *state = new VertexState[vertexCount];

109

 for (int i = 0; i < vertexCount; i++)

 state[i] = White;

 runDFS(0, state);

 delete [] state;

}

void Graph::runDFS(int u, VertexState state[]) {

 state[u] = Gray;

 for (int v = 0; v < vertexCount; v++)

 if (isEdge(u, v) && state[v] == White)

 runDFS(v, state);

 state[u] = Black;

}

4.6.2 Breadth-First Search Traversal Algorithm

Breadth-first search is a way to find all the vertices reachable from the a given source vertex, s.

Like depth first search, BFS traverse a connected component of a given graph and defines a

spanning tree. Intuitively, the basic idea of the breath-first search is this: send a wave out from

source s. The wave hits all vertices 1 edge from s. From there, the wave hits all vertices 2 edges

from s. Etc. We use FIFO queue Q to maintain the wavefront: v is in Q if and only if wave has

hit v but has not come out of v yet.

110

Overall Strategy of BFS Algorithm

Breadth-first search starts at a given vertex s, which is at level 0. In the first stage, we visit all the

vertices that are at the distance of one edge away. When we visit there, we paint as "visited," the

vertices adjacent to the start vertex s - these vertices are placed into level 1. In the second stage,

we visit all the new vertices we can reach at the distance of two edges away from the source

vertex s. These new vertices, which are adjacent to level 1 vertices and not previously assigned

to a level, are placed into level 2, and so on. The BFS traversal terminates when every vertex has

been visited.

To keep track of progress, breadth-first-search colors each vertex. Each vertex of the graph is in

one of three states:

1. Undiscovered;

2. Discovered but not fully explored; and

3. Fully explored.

The state of a vertex, u, is stored in a color variable as follows:

1. color[u] = White - for the "undiscovered" state,

2. color [u] = Gray - for the "discovered but not fully explored" state, and

3. color [u] = Black - for the "fully explored" state.

The BFS(G, s) algorithm develops a breadth-first search tree with the source vertex, s, as its root.

The parent or predecessor of any other vertex in the tree is the vertex from which it was first

discovered. For each vertex, v, the parent of v is placed in the variable π[v]. Another variable,

d[v], computed by BFS contains the number of tree edges on the path from s to v. The breadth-

first search uses a FIFO queue, Q, to store gray vertices.

 Algorithm: Breadth-First Search Traversal

BFS(V, E, s)

111

1. for each u in V − {s} // for each vertex u in V[G] except s.

2. do color[u] ← WHITE

3. d[u] ← infinity

4. π[u] ← NIL

5. color[s] ← GRAY // Source vertex discovered

6. d[s] ← 0 // initialize

7. π[s] ← NIL // initialize

8. Q ← {} // Clear queue Q

9. ENQUEUE(Q, s)

10 while Q is non-empty

11. do u ← DEQUEUE(Q) // That is, u = head[Q]

12. for each v adjacent to u // for loop for every node along with edge.

13. do if color[v] ← WHITE // if color is white you've never seen it before

14. then color[v] ← GRAY

15. d[v] ← d[u] + 1

16. π[v] ← u

17. ENQUEUE(Q, v)

18. DEQUEUE(Q)

19. color[u] ← BLACK

Example: The following figure (from CLRS) illustrates the progress of breadth-first search on

the undirected sample graph.

a. After initialization (paint every vertex white, set d[u] to infinity for each vertex u, and set the

parent of every vertex to be NIL), the source vertex is discovered in line 5. Lines 8-9 initialize Q

to contain just the source vertex s.

112

b. The algorithm discovers all vertices 1 edge from s i.e., discovered all vertices (w and r) at

level 1.

c.

d. The algorithm discovers all vertices 2 edges from s i.e., discovered all vertices (t, x, and v) at

level 2.

e.

f.

113

g. The algorithm discovers all vertices 3 edges from s i.e., discovered all vertices (u and y) at

level 3.

h.

i. The algorithm terminates when every vertex has been fully explored.

 Analysis

 The while-loop in breadth-first search is executed at most |V| times. The reason is that

every vertex enqueued at most once. So, we have O(V).

 The for-loop inside the while-loop is executed at most |E| times if G is a directed graph or

2|E| times if G is undirected. The reason is that every vertex dequeued at most once and

we examine (u, v) only when u is dequeued. Therefore, every edge examined at most

once if directed, at most twice if undirected. So, we have O(E).

Therefore, the total running time for breadth-first search traversal is O(V + E).

114

Lemma 22.3 (CLRS) At any time during the execution of BFS suppose that Q contains the

vertices {v1, v2, ..., vr} with v1 at the head and vr at the tail. Then d[v1] ≤ d[v2] ≤ ... ≤ d[vr] ≤ d[v1]

+ 1.

Let v be any vertex in V[G]. If v is reachable from s then let δ(s, v) be the minimum number of

edges in E[G] that must be traversed to go from vertex s to vertex v. If v is not reachable from s

then let δ(s, v) = ∞.

Theorem 22.5 (CLRS) If BFS is run on graph G from a source vertex s in V[G] then for all v

in V[G], d[v] = δ(s, v) and if v ≠ s is reachable from s then one of the shortest paths from s to v is

a shortest path from s to π[v] followed by the edge from π[v] to v.

BFS builds a tree called a breadth-first-tree containing all vertices reachable from s. The set of

edges in the tree (called tree edges) contain (π[v], v) for all v where π[v] ≠ NIL.

If v is reachable from s then there is a unique path of tree edges from s to v. Print-Path(G, s, v)

prints the vertices along that path in O(|V|) time.

Print-Path(G, s, v)

if v = s

 then print s

 else if π[v] ← NIL

 then print "no path exists from " s "to" v"

 else Print-Path(G, s, π[v])

 print v

Algorithms based on BFS

Based upon the BFS, there are O(V + E)-time algorithms for the following problems:

 Testing whether graph is connected.

115

 Computing a spanning forest of graph.

 Computing, for every vertex in graph, a path with the minimum number of edges between

start vertex and current vertex or reporting that no such path exists.

 Computing a cycle in graph or reporting that no such cycle exists.

4.6.3 Dijkstra's Algorithm

Dijkstra’s shortest path algorithm

Given a graph and a source vertex in graph, find shortest paths from source to all vertices in the

given graph.

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s

MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets,

one set contains vertices included in shortest path tree, other set includes vertices not yet

included in shortest path tree. At every step of the algorithm, we find a vertex which is in the

other set (set of not yet included) and has minimum distance from source.

Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single

source vertex to all other vertices in the given graph.

Algorithm

1) Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path

tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set is

empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance values as

INFINITE. Assign distance value as 0 for the source vertex so that it is picked first.

3) While sptSet doesn’t include all vertices

….a) Pick a vertex u which is not there in sptSetand has minimum distance value.

….b) Include u to sptSet.

….c) Update distance value of all adjacent vertices of u. To update the distance values, iterate

through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from

http://www.geeksforgeeks.org/archives/27455

116

source) and weight of edge u-v, is less than the distance value of v, then update the distance

value of v.

Let us understand with the following example:

The set sptSetis initially empty and distances assigned to vertices are {0, INF, INF, INF, INF,

INF, INF, INF} where INF indicates infinite. Now pick the vertex with minimum distance value.

The vertex 0 is picked, include it in sptSet. So sptSet becomes {0}. After including 0 to sptSet,

update distance values of its adjacent vertices. Adjacent vertices of 0 are 1 and 7. The distance

values of 1 and 7 are updated as 4 and 8. Following subgraph shows vertices and their distance

values, only the vertices with finite distance values are shown. The vertices included in SPT are

shown in green color.

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET).

The vertex 1 is picked and added to sptSet. So sptSet now becomes {0, 1}. Update the distance

values of adjacent vertices of 1. The distance value of vertex 2 becomes 12.

http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/Fig-11.jpg
http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/MST1.jpg

117

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET).

Vertex 7 is picked. So sptSet now becomes {0, 1, 7}. Update the distance values of adjacent

vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 respectively).

Pick the vertex with minimum distance value and not already included in SPT (not in sptSET).

Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}. Update the distance values of adjacent

vertices of 6. The distance value of vertex 5 and 8 are updated.

We repeat the above steps until sptSet doesn’t include all vertices of given graph. Finally, we get

the following Shortest Path Tree (SPT).

http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/DIJ2.jpg
http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/DIJ3.jpg
http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/DIJ4.jpg

118

How to implement the above algorithm?

We use a boolean array sptSet[] to represent the set of vertices included in SPT. If a value

sptSet[v] is true, then vertex v is included in SPT, otherwise not. Array dist[] is used to store

shortest distance values of all vertices.

// A C / C++ program for Dijkstra's single source shortest path algorithm.

// The program is for adjacency matrix representation of the graph

#include <stdio.h>

#include <limits.h>

// Number of vertices in the graph

#define V 9

// A utility function to find the vertex with minimum distance value, from

// the set of vertices not yet included in shortest path tree

int minDistance(int dist[], bool sptSet[])

{

 // Initialize min value

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++)

 if (sptSet[v] == false && dist[v] <= min)

 min = dist[v], min_index = v;

http://d1gjlxt8vb0knt.cloudfront.net/wp-content/uploads/DIJ5.jpg

119

 return min_index;

}

// A utility function to print the constructed distance array

int printSolution(int dist[], int n)

{

 printf("Vertex Distance from Source\n");

 for (int i = 0; i < V; i++)

 printf("%d \t\t %d\n", i, dist[i]);

}

// Funtion that implements Dijkstra's single source shortest path algorithm

// for a graph represented using adjacency matrix representation

void dijkstra(int graph[V][V], int src)

{

 int dist[V]; // The output array. dist[i] will hold the shortest

 // distance from src to i

 bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest

 // path tree or shortest distance from src to i is finalized

 // Initialize all distances as INFINITE and stpSet[] as false

 for (int i = 0; i < V; i++)

 dist[i] = INT_MAX, sptSet[i] = false;

 // Distance of source vertex from itself is always 0

 dist[src] = 0;

 // Find shortest path for all vertices

 for (int count = 0; count < V-1; count++)

 {

120

 // Pick the minimum distance vertex from the set of vertices not

 // yet processed. u is always equal to src in first iteration.

 int u = minDistance(dist, sptSet);

 // Mark the picked vertex as processed

 sptSet[u] = true;

 // Update dist value of the adjacent vertices of the picked vertex.

 for (int v = 0; v < V; v++)

 // Update dist[v] only if is not in sptSet, there is an edge from

 // u to v, and total weight of path from src to v through u is

 // smaller than current value of dist[v]

 if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX

 && dist[u]+graph[u][v] < dist[v])

 dist[v] = dist[u] + graph[u][v];

 }

 // print the constructed distance array

 printSolution(dist, V);

}

// driver program to test above function

int main()

{

 /* Let us create the example graph discussed above */

 int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},

 {4, 0, 8, 0, 0, 0, 0, 11, 0},

 {0, 8, 0, 7, 0, 4, 0, 0, 2},

 {0, 0, 7, 0, 9, 14, 0, 0, 0},

 {0, 0, 0, 9, 0, 10, 0, 0, 0},

121

 {0, 0, 4, 0, 10, 0, 2, 0, 0},

 {0, 0, 0, 14, 0, 2, 0, 1, 6},

 {8, 11, 0, 0, 0, 0, 1, 0, 7},

 {0, 0, 2, 0, 0, 0, 6, 7, 0}

 };

 dijkstra(graph, 0);

 return 0;

}

4.6.4 Kruskal's Algorithm

This minimum spanning tree algorithm was first described by Kruskal in 1956 in the same paper

where he rediscovered Jarnik's algorithm. This algorithm was also rediscovered in 1957 by

Loberman and Weinberger, but somehow avoided being renamed after them. The basic idea of

the Kruskal's algorithms is as follows: scan all edges in increasing weight order; if an edge is

safe, keep it (i.e. add it to the set A).

 Overall Strategy

Kruskal's Algorithm, as described in CLRS, is directly based on the generic MST algorithm. It

builds the MST in forest. Initially, each vertex is in its own tree in forest. Then, algorithm

consider each edge in turn, order by increasing weight. If an edge (u, v) connects two different

trees, then (u, v) is added to the set of edges of the MST, and two trees connected by an edge (u,

v) are merged into a single tree on the other hand, if an edge (u, v) connects two vertices in the

same tree, then edge (u, v) is discarded.

A little more formally, given a connected, undirected, weighted graph with a function w : E → R.

 Starts with each vertex being its own component.

 Repeatedly merges two components into one by choosing the light edge that connects

them (i.e., the light edge crossing the cut between them).

122

 Scans the set of edges in monotonically increasing order by weight.

 Uses a disjoint-set data structure to determine whether an edge connects vertices in

different components.

 Data Structure

 Make_SET(v): Create a new set whose only member is pointed to by v. Note that for

this operation v must already be in a set.

 FIND_SET(v): Returns a pointer to the set containing v.

 UNION(u, v): Unites the dynamic sets that contain u and v into a new set that is union

of these two sets.

 Algorithm

Start with an empty set A, and select at every stage the shortest edge that has not been chosen or

rejected, regardless of where this edge is situated in the graph.

KRUSKAL(V, E, w)

A ← { } ▷ Set A will ultimately contains the edges of the MST

for each vertex v in V

 do MAKE-SET(v)

sort E into nondecreasing order by weight w

for each (u, v) taken from the sorted list

 do if FIND-SET(u) = FIND-SET(v)

 then A ← A ∪ {(u, v)}

 UNION(u, v)

return A

 Illustrative Examples

Lets run through the following graph quickly to see how Kruskal's algorithm works on it:

123

We get the shaded edges shown in the above figure.

Edge (c, f) : safe

Edge (g, i) : safe

Edge (e, f) : safe

Edge (c, e) : reject

Edge (d, h) : safe

Edge (f, h) : safe

Edge (e, d) : reject

Edge (b, d) : safe

Edge (d, g) : safe

Edge (b, c) : reject

Edge (g, h) : reject

Edge (a, b) : safe

At this point, we have only one component, so all other edges will be rejected. [We could add a

test to the main loop of KRUSKAL to stop once |V| − 1 edges have been added to A.]

Note Carefully: Suppose we had examined (c, e) before (e, f). Then would have found (c, e)

safe and would have rejected (e, f).

Example (CLRS) Step-by-Step Operation of Kurskal's Algorithm.

Step 1. In the graph, the Edge(g, h) is shortest. Either vertex g or vertex h could be

representative. Lets choose vertex g arbitrarily.

124

Step 2. The edge (c, i) creates the second tree. Choose vertex c as representative for second tree.

Step 3. Edge (g, g) is the next shortest edge. Add this edge and choose vertex g as representative.

Step 4. Edge (a, b) creates a third tree.

Step 5. Add edge (c, f) and merge two trees. Vertex c is chosen as the representative.

125

Step 6. Edge (g, i) is the next next cheapest, but if we add this edge a cycle would be created.

Vertex c is the representative of both.

Step 7. Instead, add edge (c, d).

Step 8. If we add edge (h, i), edge(h, i) would make a cycle.

Step 9. Instead of adding edge (h, i) add edge (a, h).

126

Step 10. Again, if we add edge (b, c), it would create a cycle. Add edge (d, e) instead to complete

the spanning tree. In this spanning tree all trees joined and vertex c is a sole representative.

