
1 

 

 

 

 

FACULTY OF SCIENCE AND TECHNOLOGY 

DEPARTMENT OF COMPUTER SCIENCE 

LEVEL V WEEKEND PROGRAM 

  

 

 

 

 

 

 

 

LECTURER: Mr. UWIMANA Jean Pierre 

 

ACADEMIC YEAR: 2016-2017 

 

 

 

MODULE TITLE: PARALLEL AND 

DISTRIBUTED SYSTEM (PDSY5513) 

SYLLABUS 

 



2 

 

Table of Contents 

PART ONE: PARALLEL SYSTEM ...................................................................................................................... 4 

CHAPTER 0.INTRODUCTION ............................................................................................................................ 4 

CHAPTER I. PARALLEL COMPUTING ........................................................................................................... 13 

I.1 PARALLEL PROCESSING ....................................................................................................................... 18 

I.2.PARALLEL ARCHITECTURE ................................................................................................................. 18 

I.3.PARALLEL COMMUNICATION ............................................................................................................. 22 

I.4.COST OF PARALLEL COMPUTING ....................................................................................................... 25 

CHAPTER II.CONCURRENCY AND CONCURRENCY CONTROL ............................................................. 26 

CHAPTER III. PROCESSES AND THREADS SYNCHRONIZATION ........................................................... 28 

III.1.Basic of Concurrency ................................................................................................................................ 28 

III.2.Process Interaction (Interprocess) ............................................................................................................. 29 

III.3. Kernel synchronization ............................................................................................................................ 32 

III.4. Requirement for Mutual Exclusion .......................................................................................................... 33 

III.5. Synchronization in Windows Operating Systems .................................................................................... 34 

III.6 Synchronization in UNIX Operating System ............................................................................................ 38 

CHAPTER IV: PARALLEL PROGRAMMING ................................................................................................. 42 

CHAPTER V: PARALLEL ALGORITHMS AND COMPLEXITY. ................................................................. 44 

V.1. What is an algorithm? ............................................................................................................................... 44 

V.2 The parallel algorithms .............................................................................................................................. 45 

V.3. Parallel complexity theory ........................................................................................................................ 49 

PART TWO: DISTRIBUTED SYSTEMS ........................................................................................................... 51 

CHAPTER I: INTRODUCTION .......................................................................................................................... 51 

I.1 What is a distributed system? ...................................................................................................................... 51 

I.2 Characteristics of a distributed system. ....................................................................................................... 51 

I.3 Distributed vs. Centralized Systems ............................................................................................................ 52 

I.4 Design Goals & Issues ................................................................................................................................. 53 



3 

 

I.5 Distributed systems (control systems) ......................................................................................................... 54 

CHAPTER II: CLIENT/SERVER ........................................................................................................................ 56 

II.1 Client/Server Architecture .......................................................................................................................... 56 

II.2 Distributed Processing ................................................................................................................................ 56 

III.3 Distributed Shared Memory ...................................................................................................................... 65 

CHAPTER III: APPROPRIATE APPLICATIONS IN DISTRIBUTED SYSTEMS .......................................... 68 

III.1 MIDDLEWARE ....................................................................................................................................... 68 

CHAPTER IV: BASIC CONCEPTS IN DISTRIBUTED SYSTEMS ................................................................. 75 

IV .1 STANDARDS & PROTOCOLS ............................................................................................................. 75 

IV.2 COUPLING .............................................................................................................................................. 76 

IV.3 Naming in Distributed System .................................................................................................................. 79 

IV.4 REPLICATION AND CONSISTENCY .................................................................................................. 81 

IV.5 FAULT TOLERANCE ............................................................................................................................. 85 

IV.6 Validation and verification ....................................................................................................................... 89 

IV.7 Scheduling and Load Balancing ............................................................................................................... 90 

IV.8 Security ..................................................................................................................................................... 90 

CHAPTER V. BASIC PROBLEMS AND CHALLENGES IN DISTRIBUTED SYSTEMS ............................. 91 

V.1 TRANSPARENCY .................................................................................................................................... 91 

V.2 SCALABILITY ......................................................................................................................................... 91 

V.3 DECENTRALIZATION ............................................................................................................................ 92 

CHAPTER VI: DISTRIBUTED ALGORITHMS ................................................................................................ 93 

VI .1 Election Algorithms ................................................................................................................................. 93 

VI.2 MUTUAL EXCLUSION .......................................................................................................................... 97 

VI.3 FAULT-TOLERANT ALGORITHM ...................................................................................................... 99 

VI.4 CONSENSUS ALGORITHM ................................................................................................................ 101 

VI.5 TERMINATION DETECTION ALGORITHM .................................................................................... 102 

VI.6 STABILIZING ....................................................................................................................................... 107 



4 

 

PART ONE: PARALLEL SYSTEM 
 
 
Goals of course 
 
 

 Understand architecture of modern parallel systems.  
 

 Employ software technologies for parallel programming.  
 

 Design efficient and two-fold generic parallel solutions.  
 

 For a wide variety of parallel systems & broad class of similar algorithms.  
 

 Sharpen your low-level and high-level IT skills.  
 

 Understand their performance.  
 

 Make successful technology.  
 
 

CHAPTER 0.INTRODUCTION 
 
 
What is a system? 

 

System is a group of things worked together for common goal or even we can say process of things 

that happen together. 

 

What are Computer systems? 

 
Computer systems include the computer along with any software and peripheral devices that are 

necessary to make the computer function. Every computer system, for example, requires an operating 

system. 

 

System Boundaries 

 

System boundaries being independent entity the system of any kind has its boundaries (limits) that set 

and separate it apart from other external entities within its interests is the system boundaries. 

 

WHAT IS MICROPROCESSOR 

 

The microprocessor is one type of ultra-large-scale integrated circuit. Integrated circuits, also known 

as microchips or chips, are complex electronic circuits consisting of extremely tiny components 



5 

 

formed on a single, thin, flat piece of material known as a semiconductor. Modern microprocessors 

incorporate transistors (which act as electronic amplifiers, oscillators, or, most commonly, switches), 

in addition to other components such as resistors, diodes, capacitors, and wires, all packed into an area 

about the size of a postage stamp. 

 

A microprocessor consists of several different sections:  

The arithmetic/logic unit (ALU) performs calculations on numbers and makes logical decisions. 

The registers are special memory locations for storing temporary information much as a scratch pad 

does.  

The control unit deciphers programs; buses carry digital information throughout the chip and 

computer; and local memory supports on-chip computation.  

More complex microprocessors often contain other sections such as sections of specialized memory, 

called cache memory, to speed up access to external data-storage devices. Modern microprocessors 

operate with bus widths of 64 bits (binary digits, or units of information represented as 1s and 0s), 

meaning that 64 bits of data can be transferred at the same time. 

 

A crystal oscillator in the computer provides a clock signal to coordinate all activities of the 

microprocessor. The clock speed of the most advanced microprocessors allows billions of computer 

instructions to be executed every second 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 0.1. Microprocessor 

 

 

 

 

 



6 

 

Construction of microprocessor 
 
 
Microprocessors are fabricated using techniques similar to those used for other integrated circuits, 

such as memory chips. Microprocessors generally have a more complex structure than do other chips, 

and their manufacture requires extremely precise techniques. 

 
Economical manufacturing of microprocessors requires mass production. Several hundred dies, or 

circuit patterns, are created on the surface of a silicon wafer simultaneously. Microprocessors are 

constructed by a process of deposition and removal of conducting, insulating, and semiconducting 

materials one thin layer at a time until, after hundreds of separate steps, a complex sandwich is 

constructed that contains all the interconnected circuitry of the microprocessor. Only the outer surface 

of the silicon wafer a layer about 10 microns (about 0.01 mm/0.0004 in) thick or about one-tenth the 

thickness of a human hair is used for the electronic circuit. The processing steps include substrate 

creation, oxidation, lithography, etching, ion implantation, and film deposition. 

 

The first step in producing a microprocessor is the creation of an ultrapure silicon substrate, a silicon 

slice in the shape of a round wafer that is polished to a mirror-like smoothness. At present, the largest 

wafers used in industry are 300 mm (12 in) in diameter. 

 
In the oxidation step, an electrically no conducting layer, called a dielectric, is placed between each 

conductive layer on the wafer. The most important type of dielectric is silicon dioxide, which is 

“grown” by exposing the silicon wafer to oxygen in a furnace at about 1000°C (about 1800°F). The 

oxygen combines with the silicon to form a thin layer of oxide about 75 angstroms deep (an angstrom 

is one ten-billionth of a meter). 

 
Nearly every layer that is deposited on the wafer must be patterned accurately into the shape of the 

transistors and other electronic elements. Usually this is done in a process known as 

photolithography, which is analogous to transforming the wafer into a piece of photographic film and 

projecting a picture of the circuit on it. A coating on the surface of the wafer, called the photoresist or 

resist, changes when exposed to light, making it easy to dissolve in a developing solution.  

 

These patterns are as small as 0.13 microns in size. Because the shortest wavelength of visible light is 

about 0.5 microns, short-wavelength ultraviolet light must be used to resolve the tiny details of the 



7 

 

patterns. After photolithography, the wafer is etched that is, the resist is removed from the wafer 

either by chemicals, in a process known as wet etching, or by exposure to a corrosive gas, called a 

plasma, in a special vacuum chamber. 

 

In the next step of the process, ion implantation, also called doping, impurities such as boron and 

phosphorus are introduced into the silicon to alter its conductivity. This is accomplished by ionizing 

the boron or phosphorus atoms (stripping off one or two electrons) and propelling them at the wafer 

with an ion implanter at very high energies. The ions become embedded in the surface of the wafer. 

 
The thin layers used to build up a microprocessor are referred to as films. In the final step of the 

process, the films are deposited using sputterers in which thin films are grown in plasma; by means of 

evaporation, whereby the material is melted and then evaporated coating the wafer; or by means of 

chemical-vapor deposition, whereby the material condenses from a gas at low or atmospheric pressure. 

In each case, the film must be of high purity and its thickness must be controlled within a small 

fraction of a micron. 

 

Microprocessor architecture 

 

There is four major functional element of a microprocessor system, namely: the control unit, 

Arithmetic logic unit, Registers and bus, as shown in the figure below. 



8 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 0.2.Microprocessor architecture 
 
 
a. Control unit 
 
 
The control unit (brain) controls the entire operation of the microprocessor system. The control unit 

generates synchronization signals and manages commands exchanged between the ALU, I/O and 

the memory. The control unit fetches, decodes and executes instructions. 

 

b. Arithmetic Logic Unit 
 
 
The ALU performs arithmetic and logical operations (the basic data transformation in a 

microprocessor). The Accumulator register holds one operand, while temporary register holds the 

other operand. The result is usually stored in accumulator. 

c. Internal registers 
 
 
Internal registers are fast memories with the microprocessor used as temporary data holding areas to 

enable ALU to manipulate data at high speed. In original microprocessors, the internal registers B, 

C, D and E were used to store 8-bit data. 
 

 Address Registers. 



9 

 

 
 
There are 16-bit or more registers for the storage of addresses. They are connected to the address 

bus. They consist of the program counter, the stack pointer and the Index Register (H and L). 

 

 Program counters (PC).  

The program counter contains the address of next instruction to be executed. To execute the next 

instruction, it must be brought from the memory into the microprocessor. 

of next instruction to be executed.  
 

 Stack Pointer 
 
 
Stack pointer contains the address of the stack within the memory. The stack contains addresses of 

switching tasks, subroutines, etc. 
 

 Index Register 
 
 
Indexing is used to access blocks of data in the memory using a single instruction. An index 

register contains either a displacement that is automatically added to a base, or a base that is added 

to a displacement. 

 

 Computer bus 
 
 
A computer bus consists of a number of wires connecting a processor to another device. 

 
There are three types of bus and the control bus. The microprocessor communicates with the 

external memory and all I/O devices via the buses. 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 
 
 
 
 
 
Figure 0.5.computer bus 

 

The Microprocessor Operation 

 

During normal operation, the microprocessor sequentially fetches and executes instructions. Each 

instruction is executed as a sequence of three phases: Fetch, Decode and Execute. The operation 

cycle is as illustrated below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.6.Microprocessor operation 
 
 
Fetch phase 
 
 
The address of the instruction to be executed, loaded in the Program Counter from a computer 

program, is used to locate the instruction in the memory or I/O device. Theinstruction is then 

fetched from the memory or I/O device via the Data bus into the Instruction Register. 

 
 

 



11 

 

Decoding phase 
 
Once the instruction is in the Instruction Register, it is decoded by the Decoder of the Control Unit. 

The decoding is done to enable the microprocessor determine the kind of operation it is required to 

perform. Decoding is only performed on instruction and not data. The instruction and data in a 

typical command such as “ADD 4 to 7”is as follows 

 
ADD =  instruction 
 
 
4 and 7 =  data 
 
 
Execution 
 
 
The control unit issues appropriate sequence of signals depending on the decoded information. 

 
Typical Operational Procedure 
 
 
Suppose a microprocessor is to add 10000001 to 11100111.First, for these two numbers to be added 

they must be stored in main memory. 

 

The ADD instruction is fetched and placed in the Instruction Register where it is decoded. 

 

The element 10000001 is then fetched and placed in one of microprocessors Internal Registers (say 

register B). 

 
Next, the data 11100111 is fetched and also placed in one of the Internal Registers, and then the 

ALU is used to perform the additional operation. 

 

Classification of microprocessor 

 

The basic parameters are used to classify microprocessors: Speed and Data Bus Width. 
 
 
a. Speed 
 
 
Every microprocessor has a clock that drives its operations. Microprocessors with faster clocks 

perform operations much faster compared to those with slower clocks. To illustrate how the speed 



12 

 

of microprocessor clocks affect the speed of their operation, suppose that a slow and fast 

microprocessors are to ADD 4 to 7. 

 

b.Bus width 
 
 
The bus width of a microprocessor is determined by its Data Bus width .Higher bus widths provide 

higher performance computationally. For example to fetch a 16-bit instruction from memory using a 

data bus with of 16-bits would require a single fetch operation, whereas an 8-bit Data bus would 

require two fetch cycles to fetch the same instruction, thereby slowing the execution of instruction 

 
Microprocessor Timing 

 

ADD 4 to 7 is typical instruction or command that would normally be given to a computer to 

execute. It requires that the ADD instruction as well as the data 4 and 7 to be added should be 

fetched. 

 

Advanced CPUs 
 
 
The microprocessor family described in the last section is all manufactured by Intel Inc, 

specifically for Microcomputer. Other advanced CPUs exist that are used for manufacturing 

Minicomputers. These CPUs are usually referred to as RISC (Reduced Instruction set Computers) 

processors. By design, RISC machines are a lot faster than Intel processor based machine. 



13 

 

CHAPTER I. PARALLEL COMPUTING 
 
 
Most computers having only one CPU. However, there is a trend towards multiprocessor systems; such 

systems have more than one processor in close communication, sharing the computer bus, the clock, 

and sometimes memory and peripheral devices. These systems are referred as “Tightly coupled” 

systems. A system consisting of more than one processor and it is a tightly coupled, and then the system 

is Parallel system. In parallel systems number of processors executing their jobs parallel. There are 

several reasons for buildings such systems. 

 

Definition 
 
 
A system is said to be a Parallel System in which multiple processor have direct access to shared 

memory which forms a common address space. Usually tightly-coupled system are referred to as 

Parallel System. In these systems, there is a single system wide primary memory (address space) that is 

shared by all the processors. On the other hand Distributed System are loosely-coupled system. Parallel 

computing is the use of two or more processors (cores, computers) in combination to solve a single 

problem. Parallel machines are becoming quite common and affordable prices of microprocessors, 

memory and disks have dropped sharply recent desktop computers feature multiple processors and this 

trend is projected to accelerate. 

 

Applications of Parallel System 
 
 
An example of Parallel computing would be two servers that share the workload of routing mail, 

managing connections to an accounting system or database, solving a mathematical problem etc 

Supercomputers are usually placed in parallel system architecture Terminals connected to single server 

Advantages of Parallel System Provide Concurrency(do multiple things at the same time) Taking 

advantage of non-local resources Cost Savings Overcoming memory constraints Save time and money 

Global address space provides a user-friendly programming perspective to memory . 

 

 

 

 

 



14 

 

 

 

Parallelism is a digital computer performing more than one task at the same time 
 
Examples 
 
 
IO chips 
 
 
Most computers contain special circuits for IO devices which allow some task to be performed in 

parallel 

 
Pipelining of Instructions 
 
 
Some CPU's pipeline the execution of instructions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multiple Arithmetic units (AU) 
 
 
Some CPUs contain multiple AU so it can perform more than one arithmetic operation at the same time 

 
Disadvantages of Parallel System 
 
 
Primary disadvantage is the lack of scalability between memory and CPUs. Programmer responsibility 

for synchronization constructs that ensure "correct" access of global memory. It becomes increasingly 

difficult and expensive to design and produce shared memory machines with ever increasing numbers 

of processors.



15 

 

Parallel computation vs. serial computation 

 

Traditionally, software has been written for serial computation: To be run on a single computer having 

a single Central Processing Unit (CPU); A problem is broken into a discrete series of instructions. 

Instructions are executed one after another. Only one instruction may execute at any moment in time. 

 

Figure6: serial computation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the simplest sense, parallel computing is the simultaneous use of multiple compute resources to 

solve a computational problem: To be run using multiple processors. 

 
A problem is broken into discrete parts that can be solved concurrently 
 
 
Each part is further broken down to a series of instructions 
 
 
Instructions from each part execute simultaneously on different processors 
 
 
An overall control/coordination mechanism is employed. 



16 

 

Figure7: Parallel computation 



17 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The computational problem should be able to: 
 
 
• Be broken apart into discrete pieces of work that can be solved simultaneously;  
 
• Execute multiple program instructions at any moment in time;  
 
• Be solved in less time with multiple compute resources than with a single compute resource.  

 

The computer resources might be:  
 
• A single computer with multiple processors  
 
• An arbitrary number of computers connected by a network  
 
• A combination of both  



18 

 

I.1 PARALLEL PROCESSING 

 

Parallel Processing is computer technique in which multiple operations are carried out simultaneously. 

Parallelism reduces computational time. For this reason, it is used for many computationally intensive 

applications such as predicting economic trends or generating visual special effects for feature films.  

 

Two common ways that parallel processing is accomplished are through multiprocessing or 

instruction-level parallelism.  

 

Multiprocessing links several processors or microprocessors (the electronic circuits that provide the 

computational power and control of computers) together to solve a single problem.  

Instruction-level parallelism uses a single computer processor that executes multiple instructions 

simultaneously. If a problem is divided evenly into ten independent parts that are solved simultaneously 

on ten computers, then the solution requires one tenth of the time it would take on a single nonparallel 

computer where each part is solved in sequential order. 

 

I.2.PARALLEL ARCHITECTURE 

 
In 1966 American electrical engineer Michael Flynn distinguished four classes of processor architecture 

(the design of how processors manipulate data and instructions). Data can be sent either to a computer's 

processor one at a time, in a single data stream, or several pieces of data can be sent at the same time, 

in multiple data streams. Similarly, instructions can be carried out either one at a time, in a single 

instruction stream, or several instructions can be carried out simultaneously, in multiple instruction 

streams. 

 
Single Instruction stream, Single Data stream (SISD): One piece of data is sent to one processor. For 

example, if 100 numbers had to be multiplied by the number 3, each number would be sent to the 

processor, multiplied, and the result stored; then the next number would be sent and calculated, until all 

100 results were calculated. Applications that are suited for SISD architectures include those that 

require complex interdependent decisions, such as word processing. 



19 

 

Multiple Instruction stream, Single Data stream (MISD): Processor replicates a stream of data and 

sends it to multiple processors, each of which then executes a separate program. 

 
For example, the contents of a database could be sent simultaneously to several processors, each of 

which would search for a different value. Problems well-suited to MISD parallel processing include 

computer vision systems that extract multiple features, such as vegetation, geological features, or 

manufactured objects, from a single satellite image. 

 
Single Instruction stream, Multiple Data stream (SIMD): Multiple processing elements that carry 

out the same instruction on separate data. For example, a SIMD machine with 100 processing elements 

can simultaneously multiply 100 numbers each by the number 3. SIMD processors are programmed 

much like SISD processors, but their operations occur on arrays of data instead of individual values. 

SIMD processors are therefore also known as array processors. Examples of applications that use SIMD 

architecture are image-enhancement processing and radar processing for air-traffic control. 

 

Multiple Instruction stream, Multiple Data stream (MIMD): Processor has separate instructions for 

each stream of data. This architecture is the most flexible, but it is also the most difficult to program 

because it requires additional instructions to coordinate the actions of the processors. It also can 

simulate any of the other architectures but with less efficiency. MIMD designs are used on complex 

simulations, such as projecting city growth and development patterns, and in some artificial-intelligence 

programs. 

 

SISD - Single Instruction Single Data. Sequential Computer 
 
 
 
 
 

 

MISD - Multiple Instruction Single Data 
 
 
Each processor can do different things to the same input 
 
 
Example: Detect shapes in an image. 



20 

 

Each processor searches for a different shape in the input image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SIMD - Single Instruction Multiple Data, Each processor does the same thing to different data, 

Requires global synchronization mechanism ,Each processor knows its id number ,Not all shared 

memory computers are SIMD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MIMD(Multiple Instruction Multiple Data): Each processor can run different programs on 

different data MIMD can be shared memory or message passing Can simulate SIMD or SISD if 

there is global synchronization mechanism Communication is the main issue Harder to program 

than SIMD 



21 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure3 : Parallel architecture 



22 

 

I.3.PARALLEL COMMUNICATION 

 

Another factor in parallel-processing architecture is how processors communicate with each other. One 

approach is to let processors share a single memory and communicate by reading each other's data. This 

is called shared memory. In this architecture, all the data can be accessed by any processor, but care 

must be taken to prevent the linked processors from inadvertently overwriting each other's results. 

 
An alternative method is to connect the processors and allow them to send messages to each other. This 

technique is known as message passing or distributed memory. Data are divided and stored in the 

memories of different processors. This makes it difficult to share information because the processors 

are not connected to the same memory, but it is also safer because the results cannot be overwritten. 

 

In shared memory systems, as the number of processors increases, access to the single memory 

becomes difficult, and a bottleneck forms. To address this limitation the problem of isolated memory in 

distributed memory systems, distributed memory processors also can be constructed with circuitry that 

allows different processors to access each other's memory. This hybrid approach, known as distributed 

shared memory, eliminates the bottleneck and sharing problems of both architectures. 
 
Message-passing 
 
Processors can only access their own memory and communicate through messages (two-sided 

mechanism). 
 
Requires the least hardware support.  

Easier to debug. 
 

 Interactions happens in well-defined program parts  

 The process is in control of its memory!  

 Cumbersome communication protocol is needed 

 Remote data cannot be accessed directly, only via request. 



23 

 

Instruction-Level Parallelism (ILP): The lifecycle of an instruction 
 

 

1. Fetch the next instruction from the address stored in the program counter.  
 
2. Store that instruction in the instruction register and decode it, and increment the address in the 

program counter.  
 
3. Execute the instruction currently in the instruction register. If the instruction is not a branch 

instruction but an arithmetic instruction, send it to the proper ALU.  

a. Read the contents of the input registers. b. Add 

the contents of the input registers.  
 
4. Write the results of that instruction from the ALU back into the destination register.  
 
 
Processor-Memory Interconnection Network 
 
 

Multiprocessor 



24 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Message Passing or Multicomputers. 
 
 
Individual processors local memory; Processors communicate via a communication 
 
network. 
 
 
Mesh Communication Network 



25 

 

I.4.COST OF PARALLEL COMPUTING 

 

Parallel processing is more costly than serial computing because multiple processors are expensive and 

the speedup in computation is rarely proportional to the number of additional processors. MIMD 

processors require complex programming to coordinate their actions. Finding MIMD programming 

errors also is complicated by time-dependent interactions between processors. 

 
For example, one processor might require the result from a second processor's memory before that 

processor has produced the result and put it into its memory. This results in an error that is difficult to 

identify. Programs written for one parallel architecture seldom run efficiently on another. As a result, to 

use one program on two different parallel processors often involves a costly and time-consuming 

rewrite of that program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



26 

 

CHAPTER II.CONCURRENCY AND CONCURRENCY CONTROL 
 
 
Concurrency means to do multiple things at once (parallelism, multitasking). But concurrency 

introduces nondeterminism: the exact order in which things are done (the schedule) is not known in 

advance. Nondeterminism occurs because the schedule results from the interaction of a system and its 

scheduling policies with various asynchronous external processes, including physical processes, whose 

timings are not known or controlled by the system. 

 

It is often the case that some schedules will lead to correct outcomes and some schedules will not. Thus 

it becomes necessary for programmers to express constraints to prevent the system from selecting or 

allowing a schedule that yields an incorrect outcome. This is concurrency control. Understanding 

concurrency is a difficult intellectual challenge. Controlling concurrency is an art and a craft. It is 

important to understand the problem of concurrency and the tools of the art of concurrent programming. 

 

In earlier days concurrency control was something that operating system kernel designers worried 

about. To the extent that concurrency was a property of the hardware it was up to the kernel to control 

it. The process model of early operating systems (single-threaded processes with strong isolation 

interacting through kernel abstractions such as pipes, files, and process fork/wait) limited concurrent 

interactions to the kernel. 

 
Today concurrency has leaked into application programs. Rich GUIs must respond to user events while 

other activities are in progress. Concurrency is inherent to distributed applications, which must process 

messages arriving asynchronously from peers. In particular, high-throughput servers must process 

concurrent requests from many clients. 

 

Abstractions for concurrent programming 

 

The problem of concurrency control is fundamental and independent of the various programming 

models that exist to express or provide concurrency: events, threads, processes. There is a perennial 

disagreement about which abstractions are easiest for programmers to use in writing correct concurrent 

programs. For example, the recent interest in the MapReduce abstraction for cluster computing ("cloud 

computing") is based in part on a belief that it enables even naive programmers to write correct parallel 

programs that scale to very large clusters. The problem of safe concurrent programming is even more 



27 

 

important with the prevalence of multicore processors. 

 
Environments for safe concurrent programming generally create higher-level constructs that minimize 

direct sharing of data structures in memory by multiple threads. Instead they pass data among threads 

using messages or data streams. For example, an event-driven program might consist of single-threaded 

objects that receive streams of events. The systems research community generates a steady stream of 

papers exploring the relative merits of various models for safe concurrent programming model from the 

standpoint of ease of use and performance. 

 

However, these higher-level models use threads under the hood. And threads are still the most 

commonly encountered model for concurrent programming. The best way to understand concurrency is 

to study threads and related abstractions (synchronization primitives) for controlling concurrency in 

multi-threaded programs. 

 
Concurrent and parallel execution 

 

Concurrency and parallelism are two related but distinct concepts. 
 
 
Concurrency means, essentially, that task A and task B both need to happen independently of each 

other, and A starts running, and then B starts before A is finished. 

 

There are various different ways of accomplishing concurrency. One of them is parallelism--having 

multiple CPUs working on the different tasks at the same time. But that's not the only way. Another is 

by task switching, which works like this: Task A works up to a certain point, then the CPU working on 

it stops and switches over to task B, works on it for a while, and then switches back to task A. If the 

time slices are small enough, it may appear to the user that both things are being run in parallel, even 

though they're actually being processed in serial by a multitasking CPU.



28 

 

CHAPTER III. PROCESSES AND THREADS SYNCHRONIZATION 
 
 
Multithreading 
 
A process is an instance of the program in execution. One process is split into separate threads, 

executing a different sequence of instructions and having access to the same memory.  

Synchronization is cooperating threads, not a single operation. Since processes in concurrent systems 

frequently need to communicate with other processes therefore, there is a need for a well structured 

communication, without using interrupts, among processes. 

 
 

III.1.Basic of Concurrency 

 

In a single-processor, multitasking system, processes/threads are interleaved in time to yield the 

appearance of simultaneous execution. Even though actual parallel processing is not achieved and even 

though there is a certain amount of overhead involved in switching back and forth between 

processes/threads, interleaved execution provides major benefits in processing efficiency and in 

program structuring. 

 In multiple processor system, it is possible not only to interleave processes/threads but to overlap them 

as well. Both techniques can be viewed as examples of concurrent processing and both present the same 

problems such as in sharing (global) resources e.g. global variables and in managing the allocation of 

resources optimally e.g. the request use of a particular I/O channel or device. The following figure try 

to describe the interleaving the processes. P stands for process and t is time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

III.2.Process Interaction (Interprocess) 

 

In network and distributed computing more process interaction happens. Now let consider these 

concurrency condition when the processes interact each other instead of a standalone process. 

Theoretically, from the operating system point of view, these interactions can be classified on the basis 

of the degree to which processes are aware of each other’s existence. These have been summarized in 

Table 1. Keep in mind that in implementation, several processes may exhibit aspects of both 

competition and cooperation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some definitions 
 
1. Race condition: In a multithreaded application, a condition that occurs when multiple threads 

access a data item without coordination, possibly causing inconsistent results, depending on which 

thread reaches the data item first.  
 
2. Deadlock: In multithreaded applications, a threading problem that occurs when each member of a 

set of threads is waiting for another member of the set. At the end no thread get the resource and all 

keep waiting.  
 
3. Concurrency: The ability of more than one transaction or process to access the same data at the 



30 

 

same time. For the data changes in the database table's cell as an example, this issue must be handled 

carefully.  

4. Asynchronous call: A call to a function that is executed separately so that the caller can continue 

processing instructions without waiting for the function to return.  
 
5. Synchronous call: A function call that does not allow further instructions in the calling process to 

be executed until the function returns. There are two types of file I/O synchronization: synchronous file 

I/O and asynchronous file I/O. Asynchronous file I/O is also referred to as overlapped I/O.  

 

6. Synchronous file I/O: A thread starts an I/O operation and immediately enters a wait state until the 

I/O request has completed.  
 
7. Asynchronous file I/O: A thread performing asynchronous file I/O sends an I/O request to the 

kernel. If the request is accepted by the kernel, the thread continues processing another job until the 

kernel signals to the thread that the I/O operation is complete. It then interrupts its current job and 

processes the data from the I/O operation as necessary.  

 
 
 
III.2.1. Competition among processes for resources 
 
 

Concurrent processes come into conflict with each other when they are competing for the use of the 

same resource. Two or more processes need to access a resource during the course of their execution. 

Each process is unaware of the existence of the other processes and each is to be unaffected by the 

execution of the other processes. It follows from this that each process should leave the state of any 

resource that it uses unaffected.  

Examples of resource include I/O devices, memory, processor time and the clock. The execution of one 

process may affect the behavior of competing processes. If two processes both wish access to a single 

resource then one process will be allocated that resource by the operating system and the other one will 

have to wait. In an extreme case the blocked process may never get access to the resource and hence 

will never successfully terminate. In the case of competing processes, three control problems must be 

solved. 

 
 
1. The need for mutual exclusion. Suppose two or more processes require access to a single non-

sharable resource, such as a printer. During the course of execution, each process will be sending 



31 

 

commands to the I/O device, receiving status information, sending data and / or receiving it. We will 

refer to such a resource as a critical resource and the portion of the program that uses it as a critical 

section of the program. It is important that only one program at a time be allowed in its critical section. 

We cannot simply rely on the operating system to understand and enforce this restriction because the 

detailed requirement may not be obvious. Well, in the case of printer, for example, we wish any 

individual process to have control of the printer while it prints an entire file else lines from competing 

processes will be interleaved. 

 
 
2. Another control problem is a deadlock (permanent blocking of a set of processes that either 

compete for system resources or communicate with each other). Consider two processes P1 and P2 and 

two critical resources, R1 and R2. Suppose that each process needs access to both resources to 

perform part of its function. Then it is possible to have the following situation: R1 is assigned by the 

operating system to P2, and R2 is assigned to P1. Each process is waiting for one of the two resources. 

Well, neither will release the resource that it already owns until it has acquired the other resource and 

performed its critical section. Both processes are deadlocked.  

 
 
3. Final control problem is starvation. Suppose that three processes, P1, P2 and P3, each requires 

periodic access to resource R. Consider the situation in which P1 is in possession of the resource, and 

both P2 and P3 are delayed, waiting for that resource. When P1 exits its critical section, either P2 or P3 

should be allowed access to R. Assume that P3 is granted access and that before it completes its critical 

section, P1 again requires access. If P1 is granted access after P3 has finished, and if P1 and P3 

repeatedly grant access to each other, then P2 may indefinitely be denied access to the resource, even 

though there is no deadlock situation.  

 
 
Control of competition inevitably involves the operating system because it is the operating system that 

allocates resources. 

 
 
 
III.2.2. Cooperation among processes by sharing 
 

 

In this case processes that interact with other processes without being explicitly aware of them. For 



32 

 

example, multiple processes may have access to shared variables or to shared files or databases. 

Processes may use and update the shared data without reference to other processes but know that other 

processes may have access to the same data. Thus, the processes must cooperate to ensure the integrity 

of the shared data. Because data are held on resources (device, memory) the control problems of mutual 

exclusion, deadlock and starvation are again present but here the data items may be accesses in two 

different modes, reading and writing and only writing operation must be mutually exclusive here.  

 

Consider two processes P1 and P2 are sharing data/value A. At time t0, P1 are updating data A to B, 

and then at t1, P2 are updating data A to C. When P1 reread its previously updated data, well, the data 

is not accurate anymore (C instead of B). This is also called a race condition and there is no data 

integrity for each process. 

 

III.2.3. Cooperation among processes by communication 
 
 

Typically, communication can be characterized as consisting some sort of messages. Primitives for 

sending and receiving messages may be provided as part of the programming language or by the 

system’s kernel of the operating system. Because nothing is shared between processes in the act of 

passing messages, mutual exclusion is not a control requirement for this sort of cooperation. However 

the problems of deadlock and starvation are present.  

 

As an example of deadlock, two processes may be blocked, each waiting for a communication from the 

other. For a starvation, consider three processes P1, P2 and P3, which exhibit the following behavior: 

P1 is repeatedly attempting to communicate with either P2 or P3, and P2 and P3 are both attempting to 

communicate with either P1. A sequence could arise in which P1 and P2 exchange information 

repeatedly, while P3 is blocked waiting for a communication from P1. There is no deadlock because P1 

remains active, but P3 is starved. 

 

III.3. Kernel synchronization 

 

You should also understand the architectural basis for these synchronization primitives on 

multiprocessor systems. Their implementation requires some form of special atomic instructions as a 

toehold for more general synchronization. Examples include test-and-set, compare-and-swap, fetch-



33 

 

and-add, and load-locked-store-conditional. 

Multiprocessor kernels may use these atomic instructions directly for fast and simple primitives to 

synchronize among processors within the kernel (e.g., spinlocks). You should understand how 

spinlocks are implemented, performance implications of synchronization with spinlocks, the 

importance of interrupts and interrupt priority levels on kernel synchronization, and the interaction of 

spinlocks and interrupts. 

 
Spinlocks can be a basis for implementing the higher-level primitives for synchronizing logical 

processes or threads (mutexes, condition variables, semaphores). The latter are blocking primitives that 

may transition threads to a blocked (suspended or sleeping) state to prevent the scheduler from running 

them until some event occurs.  

Blocking synchronization primitives must interact directly with the scheduling systems, e.g., using 

primitives such as the classical Unix kernel primitives sleep and wakeup. You should understand the 

performance implications of spinning vs. blocking synchronization. 

 

III.4. Requirement for Mutual Exclusion 
 
 
The successful implementation of concurrency among processes requires the ability to define critical 

sections and enforce mutual exclusion. This is fundamental for any concurrent processing scheme. 

Generally, any facility or capability that is to provide support for mutual exclusion should meet the 

following requirement: 

 
 
1. Mutual exclusion must be entered: Only one process at a time is allowed into its critical section 

among all processes that have critical sections for the same resource or shared object.  

2. A process that halts in its non-critical section must do so without interfering with other processes.  
 
3. It must not be possible for a process requiring access to a critical section to be delayed indefinitely; 

no deadlock or starvation can be allowed.  
 
4. When no process is in a critical section, any process that requests entry to its critical section must be 

permitted to enter without delay.  

5. No assumptions are made about relative process speeds or number of processes.  
 
6. A process remains inside its critical section for a finite time only. 

 



34 

 

III.5. Synchronization in Windows Operating Systems 
 
 

 

To avoid race conditions, deadlocks and other related conditions as discussed before, it is necessary to 

synchronize access by multiple threads to shared resources. Synchronization is also necessary to ensure 

that interdependent code is executed in the proper sequence.  

In Windows, to synchronize access to a resource, you can use one of the synchronization objects in 

one of the wait functions. Each synchronization object instance can be in either a signaled or non-

signaled state. A thread can be suspended on an object in a non-signaled state; the thread is released 

when the object enters the signaled state.  

 

The mechanism is a thread issues a wait request to the NT executive by using the handle of the 

synchronization object. When an object enters the signaled state, the NT executive releases all thread 

objects that are waiting on the synchronization object. The wait functions allow a thread to block its 

own execution until a specified non-signaled object is set to the signaled state. The functions described 

in this section provide mechanisms that threads can use to synchronize access to a resource.  

 

III.5.1. Synchronization Objects 
 
 
A synchronization object is an object whose handle can be specified in one of the wait functions to 

coordinate the execution of multiple threads. More than one process can have a handle to the same 

synchronization object, making interprocess synchronization possible.  

 

In Windows Win32 programming, the following object types are provided exclusively for 

synchronization. 

 

In some circumstances, you can also use a file, named pipe, or communications device as a 

synchronization object; however, their use for this purpose is discouraged. Instead, use asynchronous 

I/O and wait on the event object set in the overlapped structure. It is safer to use the event object 

because of the confusion that can occur when multiple simultaneous overlapped operations are 

performed on the same file, named pipe, or communications device. In this situation, there is no way to 

know which operation caused the object's state to be signaled. 



35 

 

 
 
III.5.2. Wait Functions 

 

The wait functions allow a thread to block its own execution. The wait functions do not return until the 

specified criteria have been met. The type of wait function determines the set of criteria used. When a 

wait function is called, it checks whether the wait criteria have been met. If the criteria have not been 

met, the calling thread enters the wait state. It uses no processor time while waiting for the criteria to be 

met.  

There are four types of wait functions: 
 
1. Single-object.  
 
2. Multiple-object.  

3. Alertable.  
 
4. Registered.  
 
 
 
 
Single-object Wait Functions 
 
 
The SignalObjectAndWait(), WaitForSingleObject(), and WaitForSingleObjectEx() functions require a 

handle to one synchronization object. These functions return when one of the following occurs: 

 
1. The specified object is in the signaled state.  
 
2. The time-out interval elapses. The time-out interval can be set to INFINITE to specify that the wait 

will not time out.  

 
The SignalObjectAndWait() function enables the calling thread to atomically set the state of an object 

to signaled and wait for the state of another object to be set to signaled. 
 
 

 

Multiple-object Wait Functions 
 
 
The WaitForMultipleObjects(), WaitForMultipleObjectsEx(), MsgWaitForMultipleObjects(), and 

MsgWaitForMultipleObjectsEx() functions enable the calling thread to specify an array containing one 

or more synchronization object handles. These functions return when one of the following occurs: 
 
1. The state of any one of the specified objects is set to signaled or the states of all objects have been set 

to signaled. You control whether one or all of the states will be used in the function call.  



36 

 

 
2. The time-out interval elapses. The time-out interval can be set to INFINITE to specify that the wait 

will not time out.  

 
The MsgWaitForMultipleObjects() and MsgWaitForMultipleObjectsEx() function allow you to specify 

input event objects in the object handle array. This is done when you specify the type of input to wait 

for in the thread's input queue. For example, a thread could use MsgWaitForMultipleObjects() to block 

its execution until the state of a specified object has been set to signaled and there is mouse input 

available in the thread's input queue.  

The thread can use the GetMessage() or PeekMessage() function to retrieve the input. When waiting for 

the states of all objects to be set to signaled, these multiple-object functions do not modify the states of 

the specified objects until the states of all objects have been set signaled. For example, the state of a 

mutex object can be signaled, but the calling thread does not get ownership until the states of the other 

objects specified in the array have also been set to signaled. In the meantime, some other thread may 

get ownership of the mutex object, thereby setting its state to non-signaled. 
 
 

Alertable Wait Functions 
 
 
The MsgWaitForMultipleObjectsEx(), SignalObjectAndWait(), WaitForMultipleObjectsEx(), and 

WaitForSingleObjectEx() functions differ from the other wait functions in that they can optionally 

perform an alertable wait operation. In an alertable wait operation, the function can return when the 

specified conditions are met, but it can also return if the system queues an I/O completion routine or an 

APC for execution by the waiting thread. 

 

 

Registered Wait Functions 
 
 
The RegisterWaitForSingleObject() function differs from the other wait functions in that the wait 

operation is performed by a thread from the thread pool. When the specified conditions are met, the 

callback function is executed by a worker thread from the thread pool. By default, a registered wait 

operation is a multiple-wait operation. The system resets the timer every time the event is signaled (or 

the time-out interval elapses) until you call the UnregisterWaitEx() function to cancel the operation. To 

specify that a wait operation should be executed only once, set the dwFlags parameter of 

RegisterWaitForSingleObject() to WT_EXECUTEONLYONCE. 



37 

 

 

Wait Functions and Synchronization Objects 
 
 
The wait functions can modify the states of some types of synchronization objects. Modification occurs 

only for the object or objects whose signaled state caused the function to return. Wait functions can 

modify the states of synchronization objects as follows: 
 
1. The count of a semaphore object decreases by one, and the state of the semaphore is set to non-

signaled if its count is zero.  
 
2. The states of mutex, auto-reset event, and change-notification objects are set to non-signaled.  
 
3. The state of a synchronization timer is set to non-signaled.  
 
4. The states of manual-reset event, manual-reset timer, process, thread, and console input objects are 

not affected by a wait function.  

 
 
 

Wait Functions and Creating Windows 
 
 
You have to be careful when using the wait functions and code that directly or indirectly creates 

windows. If a thread creates any windows, it must process messages. Message broadcasts are sent to all 

windows in the system. If you have a thread that uses a wait function with no time-out interval, the 

system will deadlock. Two examples of code that indirectly creates windows are DDE and the 

CoInitialize() function. 

 
Therefore, if you have a thread that creates windows, use MsgWaitForMultipleObjects() or 

MsgWaitForMultipleObjectsEx(), rather than the other wait functions.



38 

 

III.6 Synchronization in UNIX Operating System 

 

Many processes can execute concurrently on the UNIX Operating system (Multiprogramming or 

multitasking) with no limit to their number logically. Some system calls allow processes execution, and 

control reaction to various events.  

In UNIX System, the only active entities are the processes. Each process runs a single program and 

initially has a single thread of control. Process management of the UNIX operating system is typically 

responsible for tasks: to create, suspend and terminated process, to switch their states, to schedule the 

CPU to execute multiple processes concurrently in time sharing system, and to manage the 

communication between processes 

 

III.6.1 Thread Synchronization in UNIX 

 

A thread is a single sequence stream within in a process. When multiple threads share the same 

memory, we need to make sure that each thread sees a consistent view of its data. If each thread uses 

variables that other threads don’t read or modify, no consistency problems will exist. Similarly, if a 

variable is read-only, there is no consistency problem with more than one thread reading its value at the 

same time. However, when one thread can modify a variable that other threads can read or modify, we 

need to synchronize the threads to ensure that they don’t use an invalid value when accessing the 

variable’s memory contents. 

 
Thread synchronization requires that a running thread gain a lock on an object before it can access it. 

The thread will wait in line for another thread that is using the method/data member to be done with it. 

This is very important to prevent the corruption of program data if multiple threads will be accessing 

the same data. If two threads try to change a variable or execute the same method at the same, this can 

cause serious and difficult to find problems. Thread synchronization helps prevent this. 

 
III.6.2 Process synchronization in UNIX 

  
A process is an instance of a program in execution. Since processes in concurrent systems frequently 

need to communicate with other processes therefore, there is a need for a well-structured 

communication, without using interrupts, among processes. Processes use two kinds of synchronization 

to control their activities; 

 



39 

 

 
a) Control synchronization: it is needed if a process waits to perform some action only after some 

other processes have executed some action,  
 
b) Data access synchronization: It is used to access shared data in a mutually exclusive manner. The 

basic technique used to implement this synchronization is to block a process until an appropriate 

condition is fulfilled. The synchronization of concurrent processes is great importance in 

multiprocessing operating systems.  

 
III.6.3 Means of synchronization in UNIX operating system  

 Mutexes  
 

 Semaphores  
 

 Monitors  
 

 Condition variables  
 

 Barrier  
 

 Spin lock  

 

1. Mutexes 
 
 
Threads can synchronize using locks called mutexes. It is possible to protect data and ensure access by 

only one thread at a time by using the pthreads mutual-exclusion interfaces. A mutex is basically a lock 

that we set (lock) before accessing a shared resource and release (unlock) when we’re done. While it is 

set, any other thread that tries to set it will block until we release it. If more than one thread is blocked 

when we unlock the mutex, then all threads blocked on the lock will be made runnable, and the first one 

to run will be able to set the lock. The others will see that the mutex is still locked and go back to 

waiting for it to become available again. In this way, only one thread will proceed at a time. 

 
2. Spin Locks 
 
 
A spin lock is like a mutex, except that instead of blocking a process by sleeping, the process is blocked 

by busy-waiting (spinning) until the lock can be acquired. A spin lock could be used in situations where 

locks are held for short periods of times and threads don’t want to incur the cost of being descheduled. 

 
Spin locks are often used as low-level primitives to implement other types of locks. Depending on the 

system architecture, they can be implemented efficiently using test-and-set instructions. Although 



40 

 

efficient, they can lead to wasting CPU resources: while a thread is spinning and waiting for a lock to 

become available, the CPU can’t do anything else. This is why spin locks should be held only for short 

periods of time. 

 
 

3. Semaphores 
 
A semaphore is a protected variable whose value can be accessed and altered only by the operations P 

and V. 
 
Initialization operation called Semaphoiinitislize. Binary Semaphores can assume only the value 0 or 

the value 1, counting semaphores, also called general semaphores, can assume only nonnegative values. 

P() or down() decrements the semaphore by one. If the semaphore is zero, the process calling P() is 

blocked until the semaphore is positive again. The P (or wait or sleep or down) operation on 

semaphores S, written as P(S) or wait (S). 

 
V() or up() increments the semaphore by one. The V (or signal or wakeup or up) operation on 

semaphore S, written as V(S) or signal (S). 
 
 
 
Note: Semaphore uses the wait and signal operations. A process that has to wait should be put to sleep, 

and should wake up only when a corresponding signal occurs, as that is the only time the process has 

any chance to proceed. 

 
4. Condition Variables 
 
 
Condition variables are another synchronization mechanism available to threads. These synchronization 

objects provide a place for threads to rendez-vous. When used with mutexes, condition variables allow 

threads to wait in a race-free way for arbitrary conditions to occur. 

 
The condition itself is protected by a mutex. A thread must first lock the mutex to change the condition 

state. Other threads will not notice the change until they acquire the mutex, because the mutex must be 

locked to be able to evaluate the condition. 

 

 
 
 
 



41 

 

5. Monitors 
 
 
Monitor is higher level synchronization. A monitor objects holds several condition variables ( waiting 

rooms) 

 
Operations: 
 
 

 Custom operations (fully synchronized)  
 

 Wait(): release the monitor and wait  
 

 Notify(): wake up one of the waiting processes  
 

 Notify All(): wake up all the waiting processes  
 
 
6. Barriers 
 
 
Barriers are a synchronization mechanism that can be used to coordinate multiple threads working in 

parallel. A barrier allows each thread to wait until all cooperating threads have reached the same point, 

and then continue executing from there. They allow an arbitrary number of threads to wait until all of 

the threads have completed processing, but the threads don’t have to exit. They can continue working 

after all threads have reached the barrier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

CHAPTER IV: PARALLEL PROGRAMMING 
 
 
Principles of parallel programming 

 

With the rise of multi-core architecture, parallel programming is an increasingly important topic for 

software engineers and computer system designers. Written by well-known researchers Larry Snyder 

and Calvin Lin, this highly anticipated first edition emphasizes the principles underlying parallel 

computation, explains the various phenomena, and clarifies why these phenomena represent 

opportunities or barriers to successful parallel programming 

 

Variable definitions 
 
 
Mutable: values may be assigned to the variables and changed during program execution (as in 

sequential languages). 

 
Definitional: variable may be assigned a value only once 
 
 
A parallel programming model is a concept that enables the expression of parallel programs which 

can be compiled and executed. The value of a programming model is usually judged on its generality, 

how well a range of different problems can be expressed and how well they execute on a range of 

different architectures. The implementation of a programming model can take several forms such as 

libraries invoked from traditional sequential languages, language extensions, or complete new 

execution models. 

 
Consensus on a particular programming model is important as it enables software expressed within it to 

be transportable between different architectures. The von Neumann model has facilitated this with 

sequential architectures as it provides an efficient bridge between hardware and software, meaning that 

high-level languages can be efficiently compiled to it and it can be efficiently implemented in 

hardware. 



43 

 

Issues in parallel programming not found in sequential programming 
 
 

 Task decomposition, allocation and sequencing  
 
 
Breaking down the problem into smaller tasks (processes) than can be run in parallel 
 
 
Allocating the parallel tasks to different processors, Sequencing the tasks in the proper order, efficiently 

use the processors 

 

 Communication of interim results between processors  
 
 
The goal is to reduce the cost of communication between processors. Task decomposition and 

allocation affect communication costs 

 

 Synchronization of processes  
 
 
Some processes must wait at predetermined points for results from other processes. 
 
 

 Different machine architectures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

CHAPTER V: PARALLEL ALGORITHMS AND COMPLEXITY. 
 
 

V.1. What is an algorithm? 
 
An algorithm is any well-defined computational procedure that takes some value, or set of values, as 

input and produces some value, or set of values, as output. An algorithm is thus a sequence of 

computational steps that transform the input into the output. 
 
We can also view an algorithm as a tool for solving a well-specified computational problem. The 

statement of the problem specifies in general terms the desired input/output relationship. The algorithm 

describes a specific computational procedure for achieving that input/output relationship. 

 
 
 An algorithm is said to be correct if, for every input instance, it halts with the correct output. We say 

that a correct algorithm solves the given computational problem. An incorrect algorithm might not halt 

at all on some input instances, or it might halt with other than the desired answer. Contrary to what one 

might expect, incorrect algorithms can sometimes be useful, if their error rate can be controlled. 

Concerned only with correct algorithms. An algorithm can be specified in English, as a computer 

program, or even as hardware 

 

The only requirement is that the specification must provide a precise description of the computational 

procedure to be followed. In looking at the development of parallel algorithms, the standard Von 

Neumann architecture is modified, from this Logical View. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



45 

 

 

To this Logical View 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unlimited CPU unlimited memory bus details left unspecified 

 

V.2 The parallel algorithms 

 

The parallel algorithms are composed from existing functionality in the Concurrency Runtime.  

 

V.2.1 Parallel_for algorithm 

 

The concurrency::parallel_for algorithm uses a concurrency::structured_task_group object to perform 

the parallel loop iterations. The parallel_for algorithm partitions work in an optimal way given the 

available number of computing resources. 

 
The concurrency::parallel_for algorithm repeatedly performs the same task in parallel. Each of these 

tasks is parameterized by an iteration value. This algorithm is useful when you have a loop body that 

does not share resources among iterations of that loop. 

 
The parallel_for algorithm partitions tasks in an optimum way for parallel execution. It uses a work-



46 

 

stealing algorithm and range stealing to balance these partitions when workloads are unbalanced. When 

one loop iteration blocks cooperatively, the runtime redistributes the range of iterations that is assigned 

to the current thread to other threads or processors. Similarly, when a thread completes a range of 

iterations, the runtime redistributes work from other threads to that thread. The parallel_for algorithm 

also supports nested parallelism.  

 The parallel_for algorithm does not execute the tasks in a pre-determined order.  
 

 The parallel_for algorithm does not support arbitrary termination conditions.  

 The parallel_for algorithm stops when the current value of the iteration variable is one less than 

_Last.  
 
 
 
V.2.2 The parallel_invoke Algorithm 
 
 
The concurrency::parallel_invoke algorithm executes a set of tasks in parallel. It does not return until 

each task finishes. This algorithm is useful when you have several independent tasks that you want to 

execute at the same time.The parallel_invoke algorithm takes as its parameters a series of work 

functions (lambda functions, function objects, or function pointers). The parallel_invoke algorithm is 

overloaded to take between two and ten parameters. Every function that you pass to parallel_invoke 

must take zero parameters. 

 
Like other parallel algorithms, parallel_invoke does not execute the tasks in a specific order. The topic 

Task Parallelism (Concurrency Runtime) explains how the parallel_invoke algorithm relates to 

tasks and task groups. 

 

V.2.3 Parallel Random-Access Machine (PRAM Model) 
 
 
A parallel random-access machine is a shared-memory abstract machine. There are n ordinary (serial) 

processors that have a shared, global memory. All processors can read from or write to the global 

memory in parallel (at the same time). The processors can also perform various arithmetic and logical 

operations in parallel. Running time can be measured as the number of parallel memory accesses an 

algorithm performs. As its name indicates, the PRAM was intended as the parallel-computing analogy 

to the random-access machine (RAM). In the same way that the RAM is used by sequential-algorithm 

designers to model algorithmic performance (such as time complexity), the PRAM is used by parallel-



47 

 

algorithm designers to model parallel algorithmic performance (such as time complexity, where the 

number of processors assumed is typically also stated). Similar to the way in which the RAM model 

neglects practical issues, such as access time to cache memory versus main memory, the PRAM model 

neglects such issues as synchronization and communication, but provides any (problem-size-dependent) 

number of processors. Algorithm cost, for instance, is estimated using two parameters O(time) and 

O(time × processor_number). Real parallel computers cannot perform parallel accesses to global 

memory in unit time. The time for a memory access grows with the number of processors in the parallel 

computer. However, real parallel machines typically have a communication network that can support 

the abstraction of a global memory. Accessing data through the network is a relatively slow operation in 

comparison with arithmetic and other operations. 

 

Thus, counting the number of parallel memory accesses executed by two parallel algorithms does yield 

a fairly accurate estimate of their relative performances. 

 

V.2.4 Read/write conflicts 
 
 
Read/write conflicts in accessing the same shared memory location simultaneously are resolved by one 

of the following strategies: 

 

1. Exclusive read exclusive write (EREW)—every memory cell can be read or written to by only 

one processor at a time  
 

2. Concurrent read exclusive write (CREW)—multiple processors can read a memory cell but only 

one can write at a time  
 

3. Exclusive read concurrent write (ERCW)—never considered  
 

4. Concurrent read concurrent write (CRCW)—multiple processors can read and write. A CRCW 

PRAM is sometimes called a concurrent random-access machine.  

 
It is up to algorithm to enforce the chosen model including how to resolve two or more writes to the 

same location. Another kind of array reduction operation like SUM, Logical AND or MAX. Several 

simplifying assumptions are made while considering the development of algorithms for PRAM. They 

are: 

 



48 

 

1. There is no limit on the number of processors in the machine.  
 

2. Any memory location is uniformly accessible from any processor.  
 

3. There is no limit on the amount of shared memory in the system.  

4. Resource contention is absent.  
 

5. The programs written on these machines are, in general, of type MIMD. Certain 

special cases such as SIMD may also be handled in such a framework.  

 
These kinds of algorithms are useful for understanding the exploitation of concurrency, dividing 

the original problem into similar sub-problems and solving them in parallel. 

 
 

Concurrent read access and exclusive write access to data in shared memory 

architecture 
 
 
Concurrent read access and exclusive write access are provided in a shared memory architecture 

to permit one or more devices in the shared memory architecture to maintain read access to a 

block of memory such as a cache line while one device has exclusive permission to modify that 

block of memory. By doing so, a device that has permission to modify may make updates to its 

copy of the block of memory without invalidating other copies of the block of memory, and 

potentially enabling other devices to continue to read data from their respective copies of the 

block of memory without having to retrieve the updated copy of the block of memory. 

 

V.2.5  Pointer Jumping 
 
The technique of pointer jumping (or pointer doubling) allows fast parallel processing of linked 

data structures such as lists and trees. We usually draw trees with edges directed from children to 

parents. 
 
 
 
V.2.6 Brent’s Theorem and work efficiency 
 

 

The following theorem, due to Brent, relates the work and time complexities of a parallel 

algorithm described in the WT formalism to its running time on a p-processor PRAM. 
 
 



49 

 

V.3. Parallel complexity theory 

 

A common sense on feasibility of some computing resource is that the growth rate for the 

resource is bounded by a polynomial in input size. In the world of sequential problem solving, 

the most valuable resource is time. Hence, a problem is feasible, or tractable, if it is solvable in 

polynomial time and intractable if the best known algorithm has higher than polynomial time 

complexity and all other intractable problems are known to be reducible to this problem. (Recent 

advances in complexity theory consider approximatively tractable problems which are intractable 

if we seek exact solutions, but are tractable if we can accept approximate solutions).  

Obviously, a sequentially intractable problem remains intractable in parallel if we use at most 

polynomial number of processors. And polynomial number of processors is the maximum we 

can hope for in practice. Hence, parallel complexity theory deals only with sequential 

polynomial problems. Most of the machinery of the parallel complexity theory is derived from 

the sequential one, which uses specific formal framework to make its results and conclusions 

independent on particular implementation details of algorithms and robust with respect to various 

models and architectures of computing devices. So before explain the basic ideas of the parallel 

complexity, we review the basic notions of the classical complexity theory, so that we can 

understand how the parallel complexity theory relates to the classical one. 

 

Basics notions of sequential complexity theory 

 

Complexity class: a collection of problems of some characteristic worst cases difficulty. Some 

problems in a class may be easier than the others, but all of them can be solved within the same 

resource bounds associated with the class.  

 

Abstract problem: a binary relation between a set of problem instances and a set of the problem 

solutions. The size of an instance is the number of symbols (digits, letters, delimiters, etc) in the 

full problem specification.  

 
Example: SPP = Shortest Path Problem: Given graph G and two vertices u,v, find in G a 

shortest path between u and v. The set of instances is the set of all triples ( G,u,v) and a given 

instance may have zero, one, or more solutions - paths from u to v. 

 



50 

 

Decision problem: a problem with solutions Yes/No. Optimization problems can be formulated 

as decision problems, typically by imposing bounds on the values to be optimized. 

Example: PATH = the decision problem for SPP: Given G, u,v and an integer k, does a path 

exist in G between u and v whose length is at most k? 

 
Observation: If a decision problem is hard, so is the related optimization problem (since easy 

optimization problem makes the decision problem easy). Therefore, the complexity theory deals 

only with decision problems.  

 
 
Compact encoding: Any abstract notions, such as numbers, graphs, functions, polygons, 

programs, can be encoded using strings over some finite alphabet Z. An encoding is compact if 

the length of the encoded instance is of the same order as the size of the abstract instance. That 

is, they must be equivalent within a polynomial factor.  

 

Concrete problem: an abstract problem encoded for a computing device using some compact 

encoding, typically a binary one (such as ASCII). 
 
Input size: the length of a binary encoding of a problem instance, denoted by |x| for input x. 

 

Sequential time: A sequential algorithm solves a concrete problem in time T(n) if it produces a 

solution in time O(T(|x|)) for any input x.  
 

Polynomial class P: the set of all problems with T(n)=O(n
O(1)

). A polynomial problem remains 

polynomial regardless of which ``compact'' encoding is chosen, since any such encoding can be 

converted into a binary one in polynomial time. That is why the complexity theory deals only 

with binary encoding.  
 
 
 
Input accepted/rejected by an algorithm: Algorithm A accepts (rejects) binary string x if A 

outputs 1 (0) for input x.  

Acceptability: L is accepted in time T(n) if any x in L is accepted in time T(n). To accept a 

language, the algorithm needs only to worry about strings in the language. If x is not accepted, 

then it is either rejected or A may loop forever for input x.  

 
        



51 

 

PART TWO: DISTRIBUTED SYSTEMS 
 
 

CHAPTER I: INTRODUCTION 
 

I.1 What is a distributed system? 
 
A distributed system is collection of heterogeneous nodes connected by one or more 

interconnection networks which provides access to system-wide shared resources and services. It 

is a collection of independent computers that appears to its users as a single coherent system. 

 

A distributed system consists of a collection of autonomous computers linked by a computer 

network and equipped with distributed system software. This software enables computers to 

coordinate their activities and to share the resources of the system hardware, software, and data. 

Users of a distributed system should perceive a single, integrated computing facility even though 

it may be implemented by many computers in different locations. This is in contrast to a 

network, where the user is aware that there are several machines whose locations, storage 

replications, load balancing, and functionality are not transparent.  

 

Benefits of distributed systems include bridging geographic distances, improving performance 

and availability, maintaining autonomy, reducing cost, and allowing for interaction.  

I.2 Characteristics of a distributed system. 

 

Multiple Computers: More than one physical computer, each consisting of CPUs, local 

memory, and possibly stable storage, and I/O paths to connect it with the environment. 

Interconnections: Mechanisms for communicating with other nodes via a network. 
 
Shared State: If a subset of nodes cooperates to provide a service, a shared state is maintained 

by these nodes. The shared state is distributed or replicated among the participants. 

 
 
 

 

 

 

 

 

 



52 

 

An Abstract View Distributed Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

A distributed system organized as middleware. Note that the middleware layer extends over 

multiple machines. 
 
 

I.3 Distributed vs. Centralized Systems 

 

 Why distribute? 
 

 Resource sharing 
 

 Device sharing 
 

 Flexibility to spread load 
 

 Incremental growth 
 

 Cost/performance 
 

 Reliability/Availability 
 

 Inherent distribution 
 

 Security? 
 
 
Why NOT distribute(challenge)? 
 
 
Software,Network,Security,System management 

 
 
Numerous sources of complexity including: 
 
 



53 

 

Transparent/uniform access to data or resources 

Independent failures of processors (or processes) 
 
 
Dynamic membership of a system 

 
 
Unreliable/unsecured communication 

 
 

I.4 Design Goals & Issues 

 

Connecting users and resources is the primary goal 
 
 
Transparency: hide the fact that processes and resources are physically distributed 

 
 
Openness: offer services according to rules and interfaces that describe the syntax and 

semantics of those services 

 
Interoperability and portability, Separating policy from mechanism, Overhead in message 

communication, Distribution or replication of data (or meta-data), Lack of clean common 

interfaces. 

 
 

The object-oriented model for a distributed system is based on the model supported by object-

oriented programming languages. Distributed object systems generally provide remote method 

invocation (RMI) in an object-oriented programming language together with operating systems 

support for object sharing and persistence. Remote procedure calls, which are used in client-

server communication, are replaced by remote method invocation in distributed object systems. 

 
The state of an object consists of the values of its instance variables. In the object-oriented 

paradigm, the state of a program is partitioned into separate parts, each of which is associated 

with an object. Since object-based programs are logically partitioned, the physical distribution of 

objects into different processes or computers in a distributed system is a natural extension. The 

Object Management Group's Common Object Request Broker (CORBA) is a widely used 

standard for distributed object systems. Other object management systems include the Open 

Software Foundation's Distributed Computing Environment (DCE) and Microsoft's Distributed 



54 

 

Common Object Manager (DCOM). 

 
 

I.5 Distributed systems (control systems) 

 

Collections of modules, each with its own specific function, interconnected to carry out 

integrated data acquisition and control. Industrial control systems have evolved from totally 

analog systems through centralized digital computer-based systems to multilevel, distributed 

systems. Originally, industrial control systems were entirely analog, with each individual process 

variable controlled by a single feedback controller. Although analog control systems were simple 

and reliable, they lacked integrated information displays for the process operator. 

 

In supervisory control, the analog portion of the system is implemented in a traditional manner 

(including analog display in the central operating room), but a digital computer is added which 

periodically scans, digitizes, and inputs process variables to the computer. The computer is used 

to filter the data, compute trends, generate specialized displays, plot curves, and compute 

unmeasurable quantities of interest such as efficiency or quality measures. Once such data are 

available, optimal operation of the process may be computed and implemented by using the 

computer to output set-point values to the analog controllers. This mode of control is called 

supervisory control because the computer itself is not directly involved in the dynamic feedback. 

 

Direct digital control replaces the analog control with a periodically executed equivalent digital 

control algorithm carried out in the central digital computer. A direct digital control system 

periodically scans and digitizes process variables and calculates the change required in the 

manipulated variable to reduce the difference between the set point and the process variable to 

zero. 

 
The advantages of direct digital control are the ease with which complex dynamic control 

functions can be carried out and the elimination of the cost of the analog controllers themselves. 

To maintain the attractive display associated with analog control systems, the display portion of 

the analog controller is usually provided. Thus operation of the process is identical to operation 

of digital supervisory control systems with analog controllers, except that “tuning” of the 

controllers (setting of gains) can be done through operator consoles. 



55 

 

 
The cost reduction which resulted from the introduction of direct digital control was offset by a 

number of disadvantages. The most notable of these were the decrease in reliability and the total 

loss of graceful degradation. Failure of a sensor or transmitter had the same effect as before, but 

failure of the computer itself threw the entire control system into manual operation. Hence it was 

necessary to provide analog controllers to back up certain critical loops which had to function 

even when the computer was down. 

 

Increasing demand for ever-higher levels of supervisory control highlighted two disadvantages 

of centralized digital computer control of processes. First, process signals were still being 

transmitted from the process sensor to the central control room in analog form, meaning that 

separate wires had to be installed for every signal going to or from the computer. Second, the 

digital computer system itself evolved into a very complex unit because of the number of devices 

attached to the computer and because of the variety of different programs needed to carry out the 

myriad control and management functions. The latter resulted in the need for an elaborate real-

time operating system for the computer which could handle resources, achieve desired response 

time for each task, and be responsible for error detection and error recovery in a highly dynamic 

real-time environment. Design coding, installation, and checkout of centralized digital control 

systems was so costly and time-consuming that application of centralized digital control was 

limited. 

Low-cost electronic hardware utilizing large-scale integrated circuits provided the technology to 

solve both of these problems while retaining the advantages of centralized direct digital and 

supervisory control. The solution, distributed control, involved distributing control functions 

among hardware modules to eliminate the critical central computer. 

 
The combination of reliable, responsive distributed control and general-purpose communication 

networks leads to a system which can be adapted to critical control applications in a very flexible 

manner, with potential for increased productivity in plants, increased safety, and decreased 

energy consumption. Technology for higher-speed computation, data communication, and 

object-oriented software organization allows the integration of distributed control systems into 

plant-wide and enterprise-wise systems. 

 



56 

 

CHAPTER II: CLIENT/SERVER 

 
 
Server is a computer that supplies services or data to other machines on a local area network 

(LAN) or a wide area network (WAN) such as the Internet. Some servers run administrative 

software that controls access to all or part of the network and its resources (such as disk drives or 

printers). Others provide files, applications, or World Wide Web pages. Computers that request 

services or data from a server are known as clients. 

 
 

II.1 Client/Server Architecture 

 

An arrangement used on local area networks that makes use of “distributed intelligence” to treat 

both the server and the individual workstations as intelligent, programmable devices, thus 

exploiting the full computing power of each. This is done by splitting the processing of an 

application between two distinct components: a “front-end” client and a “back-end” server. The 

client component, itself a complete, stand-alone personal computer (versus the “dumb” terminal 

found in older architectures such as the time-sharing used on a mainframe) offers the user its full 

range of power and features for running applications.  

 

The server component, which can be another personal computer, minicomputer, or a mainframe, 

enhances the client component by providing the traditional strengths offered by minicomputers 

and mainframes in a time-sharing environment: data management, information sharing between 

clients, and sophisticated network administration and security features. The advantage of the 

client/server architecture over older architectures is that the client and server machines work 

together to accomplish the processing of the application being used. Not only does this increase 

the processing power available, but it also uses that power more efficiently. The client portion of 

the application is typically optimized for user interaction, whereas the server portion provides the 

centralized, multi-user functionality. 

 

II.2 Distributed Processing 
 

 

Distributed Processing is a form of information processing in which work is performed by 

separate computers that are linked through a communications network. Distributed processing is 



57 

 

usually categorized as either plain distributed processing or true distributed processing.  

- Plain distributed processing shares the workload among computers that can communicate with 

one another.  

- True distributed processing has separate computers perform different tasks in such a way that 

their combined work can contribute to a larger goal, such as the transfer of funds from one bank 

to another. This type of processing requires a highly structured environment that allows hardware 

and software to communicate, share resources, and exchange information freely. At the highest 

(and most visible) levels, such distributed processing can also require data-transfer mechanisms 

that are relatively invisible to users but that enable different programs to use and share one 

another's data. 

 
 
II.2.1 Message Passing 
 

 

Message passing is the basis of most interprocess communication in distributed systems. It is at 

the lowest level of abstraction and requires the application programmer to be able to identify the 

destination process, the message, the source process and the data types expected from these 

processes. 
 

1. Syntax 
 
Communication in the message passing paradigm, in its simplest form, is performed using the 

send() and receive() primitives. The syntax is generally of the form: send(receiver, message) 
 
receive(sender, message) 
 
The send() primitive requires the name of the destination process and the message data as 

parameters. The addition of the name of the sender as a parameter for the send() primitive would 

enable the receiver to acknowledge the message. The receive() primitive requires the name of 

the anticipated sender and should provide a storage buffer for the message. 
 

2. Semantics 
 
Decisions have to be made, at the operating system level, regarding the semantics of the send() 

and receive() primitives. The most fundamental of these are the choices between blocking and 

non-blocking primitives and reliable and unreliable primitives. 
 
Blocking/non-blocking: A blocking send() blocks the process and does not execute the 

following instruction until the message has been sent and the message buffer has been cleared. In 



58 

 

the same way a blocking receive blocks at the receive() until the message arrives. A non 

blocking send returns control to the caller immediately. The message transmission is then 

executed concurrently with the sending process. This has the advantage of not leaving the CPU 

idle while the send is being completed. However, the disadvantage of this approach is that the 

sender does not know and will not be informed when the message buffer has been cleared. To 

overcome this the kernel can either make a copy of the message buffer or send an interrupt to the 

sender when the message buffer has been cleared. At the implementation level, although non-

blocking primitives are flexible they make programming and debugging very difficult, hence, for 

the sake of easier programming, blocking primitives are often chosen. 

 
 
Buffered/unbuffered messages: An unbuffered receive() means that the sending Process sends 

the message directly to the receiving process rather than a message buffer. The address, receiver, 

in the send() is the address of the process, but in the case of an buffered send() the address is that 

of the buffer. There is a problem, in the unbuffered case, if the send() is called before the 

receive() because the address in the send does not refer to any existing process on the server 

machine. Buffered messages are saved in a buffer until the server process is ready to receive 

them. They can best be implemented through a mechanism in the operating system which can 

keep a backlog of sends, a port in which messages are queued waiting until requested by the 

receiver. The buffer capacity can either be bounded, where a predetermined number of messages 

can be stored, or unbounded. An unbounded buffer could be implemented using dynamic 

memory allocation, thus its capacity would be fixed only by the size of available memory. 

 
 
Reliable/unreliable send: Unreliable send() sends a message to the receiver and does not expect 

acknowledgement of receipt, nor does it automatically retransmit the message to ensure receipt. 

A reliable send () guarantees that, by the time the send() is complete, the message has been 

received. The primitive itself handles acknowledgements and retransmission in response to lost 

messages. At the implementation level the operating system must wait only for a specified length 

of time, so that a process does not remain blocked indefinitely waiting for a response from a 

receiver that has terminated. Lost messages are handled either by the operating system 

retransmitting the message or informing the sender of the message’s loss or by the sender 

detecting the loss itself. 

 



59 

 

 
Direct/indirect communication: Ports allow indirect communication. Messages are sent to the 

port by the sender and received from the port by the receiver. Direct communication involves the 

message being sent direct to the process itself, which is named explicitly in the send, rather than 

to the intermediate port. 

 
 
Fixed/variable size messages: Fixed size messages have their size restricted by the system. The 

implementation of variable size messages is more difficult but makes Programming easier; the 

reverse is true for fixed size messages. 

 
 
Passing data by reference/value/address mapping: Data, in message passing, is often passed 

by value, since the processes execute in separate address spaces However, another parameter 

passing mechanism is available which would be suitable for a message passing system. This is 

referred to as call-by-copy/restore. The variable is essentially passed by value but the returned 

value overwrites the original value so that the final result is the same as if it were passed by 

reference In message passing systems the onus is on the application programmer to control data 

movement between processes and to control the synchronization of these processes, where they 

have access to shared data. 

 
II.2.2 Microsoft Remote Procedure Call (RPC) 
 
 
Microsoft Remote Procedure Call (RPC) is a powerful technology for creating distributed 

client/server programs. RPC is an interprocess communication technique that allows client and 

server software to communicate. The Microsoft RPC facility is compatible with the Open 

Group’s Distributed Computing Environment (DCE) specification for remote procedure calls and 

is interoperable with other DCE-based RPC systems, such as those for HP-UX and IBM AIX 

UNIX–based operating systems. 

 

Computer operating systems and programs have steadily gotten more complex over the years. 

With each release, there are more features. The growing intricacy of systems makes it more 

difficult for developers to avoid errors during the development process.  Often, developers create 

a solution for their system or application when a nearly identical solution has already been 

devised. This duplication of effort consumes time and money and adds complexity to already 



60 

 

complex systems. 

 
RPC is designed to mitigate these issues by providing a common interface between applications. 

RPC serves as a go–between for client/server communications. RPC is designed to make 

client/server interaction easier and safer by factoring out common tasks, such as security, 

synchronization, and data flow handling, into a common library so that developers do not have to 

dedicate the time and effort into developing their own solutions. 

 

Figure 1. Role of client and server stub procedures in RPC in the context of a 
 
procedural language 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 RPC only addresses procedure calls. 
 

 RPC is not concerned with objects and object references. 
 

 A client that accesses a server includes one stub procedure for each procedure in the 

service interface. 

 A client stub procedure is similar to a proxy method of RMI. 
 

 A server stub procedure is similar to a skeleton method of RMI. 
 

 Message passing leaves the programmer with the burden of the explicit control of the 

movement of data. Remote procedure calls (RPC) relieves this burden by 
 

 increasing the level of abstraction and providing semantics similar to a local procedure 

call. 
 



61 

 

1 Syntax 
 
The syntax of a remote procedure call is generally of the form:  

call procedure_name(value_arguments; result_arguments) 
 
The client process blocks at the call() until the reply is received. The remote procedure is the 

server processes which has already begun executing on a remote machine. 
 
It blocks at the receive() until it receives a message and parameters from the sender. The server 

then sends a reply() when it has finished its task. The syntax is as follows: receive 

procedure_name(in value_parameters; out result_parameters) 
 
reply (caller, result_parameters) 
 

 

2 .Semantics 
 
The semantics (meaning) of RPC are the same as those of a local procedure call — the calling 

process calls and passes arguments to the procedure and it blocks while the procedure executes. 

When the procedure completes it can return results to the calling process. In the simplest case, 

the execution of the call() generates a client stub which organizes the arguments into a message 

and sends the message to the server machine. On the server machine the server is blocked 

awaiting the message. On receipt of the message the server stub is generated and extracts the 

parameters from the message and passes the parameters and control to the procedure. The results 

are returned to the client with the same procedure in reverse .The following issues regarding the 

properties of remote procedure calls need to be considered in the design of an RPC system if the 

distributed system is to achieve transparency. 
 
Binding: Binding provides a connection between the name used by the calling process and the 

location of the remote procedure. Binding can be implemented, at the operating system level, 

using a static or dynamic linker extension which binds the procedure name with its location on 

another machine. Another method is to use procedure variables which contain a value which is 

linked to the procedure location. 
 
Communication transparency: The users should be unaware that the procedure they are calling 

is remote. The three difficulties when attempting to achieve transparency are: the detection and 

correction of errors due to communication and site failures, the passing of parameters, and 

exception handling. Communication and site failures can result in inconsistent data because of 

partially completed processes. The solution to this problem is often left to the application 



62 

 

programmer. Parameter passing in most systems is restricted to the use of value parameters. 

Exception handling is a problem also associated with heterogeneity. The exceptions available in 

different languages vary and have to be limited to the lowest common denominator. 

 
 
Concurrency: Concurrency mechanisms should not interfere with communication mechanisms. 

Single threaded clients and servers, when blocked while waiting for the resultsNfrom a RPC, can 

cause significant delays. These delays can be exacerbated by further remote procedure calls 

made in the server. Lightweight processes allow the server to execute calls from more than one 

client concurrently. 

 
 
Heterogeneity: Different machines may have different data representations, the Machines may 

be running different operating system or the remote procedure may have been written using a 

different language. Static interface declarations of remote procedures serve to establish 

agreement between the communicating processes on argument types, exception types (if 

included), type checking and automatic conversion from one data representation to another, 

where required. Generally RPC proves a simpler means for an application programmer to 

construct distributed programs than simple message passing because it abstracts away from the 

details of communication and transmission. However, the achievement of true transparency is a 

problem which has not been completely resolved for RPC, still leaving much of the work and 

responsibility for the application programmer. 

 
 
Terms and Definitions 
 
 
The following terms are associated with RPC. 
 
 
Client: A process, such as a program or task, that requests a service provided by another 

program. The client process uses the requested service without having to “deal” with many 

working details about the other program or the service. 

 
Server: A process, such as a program or task, that responds to requests from a client. 
 
 
Endpoint: The name, port, or group of ports on a host system that is monitored by a server 

program for incoming client requests. The endpoint is a network-specific address of a server 



63 

 

process for remote procedure calls. The name of the endpoint depends on the protocol sequence 

being used. 

 
Endpoint Mapper (EPM): Part of the RPC subsystem that resolves dynamic endpoints in 

response to client requests and, in some configurations, dynamically assigns endpoints to servers. 

 
Client Stub: Module within a client application containing all of the functions necessary for the 

client to make remote procedure calls using the model of a traditional function call in a 

standalone application. The client stub is responsible for invoking the organizing engine and 

some of the RPC application programming interfaces (APIs). 

 
Server Stub : Module within a server application or service that contains all of the functions 

necessary for the server to handle remote requests using local procedure calls. 

 
RPC Dependencies and Interactions: RPC is a client/server technology in the most generic 

sense. There is a sender and a receiver; data is transferred between them. This can be classic 

client/server (for example, Microsoft Outlook communicating with a server running Microsoft 

Exchange Server) or system services within the computer communicating with each other. 

 
Message Passing vs. Remote Procedure Call 

 
 
 
Message Passing and RPC are two major used methods of computer communication. RPC is 

built on top of MP. MP on one hand provides a non-reliable, asynchronous method of 

communication, RPC on the other hand, provides reliable and synchronous communication. 

The arguments between MP and RPC are going to be very similar to the arguments between 

UDP and TCP. Since, RPC is a layer on top of MP; End-to-End argument applies here. RPC 

fits better in a client server model while MP fits better in a peer-to-peer/Ad-hoc model of 

communication. 

 

Alternative steps a programmer needs to take while using MP: 

 

 Since reliability is not provided by default in MP, we can use reliable send (a send 

which will not return unless the message has been delivered to the other end) can be 



64 

 

used. 
 

 Similarly, a reliable send would also provide us with synchronous behavior. 
 

 Programmer can write his own marshalling and de-marshalling algorithms. 
 

 Programmer can develop his own resource discovery mechanisms. 
 
 
How does RPC provides these things: 

 

 RPC does provide reliability 
 

 RPC calls are synchronous by nature/implementation 
 

 RPC abstracts away the marshalling/de-marshalling details from the programmer. Hence 

programmer doesn’t have to worry about the same 
 

 RPC provides central resource manager 
 
 
To sum it up, RPC does provide extra functionalities but if they are not required in a certain 

scenario, these extra functionalities would end up creating lot delays and performance 

overheads, and hence MP would be a better option. But if you need to pass around 

complicated data structures and the scenario requires lot of synchronous communications 

among servers, then RPC would be a preferred choice. 

 

RPC vs RMI 
 
 
RPC (Remote Procedure Call) and RMI (Remote Method Invocation) are two mechanisms 

that allow the user to invoke or call processes that will run on a different computer from the 

one the user is using. The main difference between the two is the approach or paradigm used. 

RMI uses an object oriented paradigm where the user needs to know the object and the method 

of the object he needs to invoke. In comparison, RPC isn’t object oriented and doesn’t deal 

with objects. Rather, it calls specific subroutines that are already established. 

 
RPC is a relatively old protocol that is based on the C language, thus inheriting its paradigm. 

With RPC, you get a procedure call that looks pretty much like a local call. RPC handles the 

complexities involved with passing the call from the local to the remote computer. RMI does the 

very same thing; handling the complexities of passing along the invocation from the local to the 

remote computer. But instead of passing a procedural call, RMI passes a reference to the object 

and the method that is being called. RMI was developed by Java and uses its virtual machine. Its 



65 

 

use is therefore exclusive to Java applications for calling methods on remote computers. 

 
In the end, RPC and RMI are just two means of achieving the same exact thing. It all comes 

down to what language you are using and which paradigm you are used to. Using the object 

oriented RMI is the better approach between the two, especially with larger programs as it 

provides a cleaner code that is easier to track down once something goes wrong. Use of RPC is 

still widely accepted, especially when any of the alternative remote procedural protocols are not 

an option. 

 
1. RMI is object oriented while RPC isn’t 

 
2. RPC is C bases while RMI is Java only 

 
3. RMI invokes methods while RPC invokes functions 

 
4. RPC is antiquated while RMI is the future 

 
 

III.3 Distributed Shared Memory 

 

Distributed Shared Memory (DSM). DSM increases the complexity of the operating system but 

makes the job of application programmers far easier by allowing them to use the concept of 

shared memory when writing programs. Distributed shared memory is memory which, although 

distributed over a network of autonomous computers, gives the appearance of being centralized. 

The memory is accessed through virtual addresses, thus processes are able to communicate by 

reading and modifying data which are directly addressable. DSM allows programmers to use 

shared memory style programming, which makes application programming considerably easier. 

Programmers are able to access complex data structures and are relieved of the concerns of 

message passing. However, message passing cannot be avoided altogether. The operating system 

has to send messages between machines with requests for memory not available locally and to 

make replicated memory consistent. 

 
 
1. Syntax 
 
The syntax used for DSM is the same as that of normal centralized memory multiprocessor 

systems. 
 
read(shared_variable) 



66 

 

write(data, shared_variable) 
 
The read() primitive requires the name of the variable to be read as its argument and the write() 

primitive requires the data and the name of the variable to which the data is to be written. The 

operating system locates the variable through its virtual address and, if necessary, moves the 

portion of memory containing the variable to the machine requiring it. 

 
 
2. Semantics 
 
There are several issues related to the semantics of DSM. 
 
Structure and granularity of the shared memory: These two issues are closely related. The 

memory can take the form of an unstructured linear array of words or the structured forms of 

objects, language types or an associative memory. The granularity relates to the size of the 

chunks(cut) of the shared data. A decision has to be made whether it should be fine or coarse 

grained and whether data should be shared at the bit, word, complex data structure or page level. 

A coarse grained solution, page-based distributed memory management, is an attempt to 

implement a virtual memory model where paging takes place over the network instead of to disk. 

It offers a model which is similar to the shared memory model and is familiar to programmers, 

with sequential consistency at the cost of performance. Finer grained models can lead to higher 

network traffic. 
 
Consistency: In the simplest implementation of shared memory a request for a nonlocal piece of 

data results in a trap, which causes the single copy of the data to be fetched. If a piece of data 

was required by more than one machine the data could be moved backwards and forwards 

between the machines. This is very similar to thrashing in virtual memory and has the effect of 

considerably lowering performance. 
 
The problem of thrashing is overcome by allowing multiple copies of data on the distributed 

machines. The problem then becomes one of maintaining the consistency of the replicated data. 

The cache coherence protocols of tightly coupled multiprocessors are a well researched topic, 

however many of these protocols are thought to be unsuitable for distributed systems because the 

strict consistency models used cause too much network traffic. Consistency models determine 

the conditions under which memory updates will be propagated through the system. These 

models can be divided into those with and those without synchronization operations. The former 

include strict, sequential, causal, processor and PRAM consistency models, while models with 



67 

 

synchronization operations include weak, release and entry consistency models. 
 
There is a weakening of the consistency models from strict to entry consistency. Weaker models 

reduce the amount of network traffic hence the performance of the system improves. Thus, 

weaker consistency models have been used in an attempt to achieve better performance in 

distributed systems. However, this makes the programming model more complicated and makes 

weaker consistency the concern of operating systems and language designers. 
 
Synchronization: Shared data must be protected by synchronization primitives, semaphores, 

event counts, monitors or locks. There are three methods of managing synchronization. Firstly, it 

can be managed by a synchronization manager, as in the case of page-based systems, or 

secondly, it can be made the responsibility of the application programmer, using explicit 

synchronization primitives, as in the shared variable implementation. Finally, it can be made the 

responsibility of the system developer, as in object based implementations, with synchronization 

being implicit at application level. 
 
Heterogeneity: Sharing data between heterogeneous machines is an important problem for 

distributed shared memory designers. Data shared at the page level is not typed, hence 

accommodating different data representations of different machines, languages or operating 

systems is a very difficult problem. The Mermaid approach is to only allow one type of data on 

an appropriately tagged page. 
 
The overhead of converting the data might be too high to make DSM on a heterogeneous system 

worth implementing. 
 
Scalability: One of the benefits of DSM systems mentioned in much of the literature is that they 

scale better than many tightly-coupled shared memory multiprocessors. However, scalability is 

limited by physical bottlenecks, e.g., buses in tightly-coupled multiprocessor systems and 

operations which require global information or distribute information globally, e.g. broadcast 

messages. 

 
 
 
 
 
 
 
 
 
 
 
 
 



68 

 

CHAPTER III: APPROPRIATE APPLICATIONS IN DISTRIBUTED SYSTEMS 
 

III.1 MIDDLEWARE 

 

III.1.1 History of Middleware 
 
The term middleware first appeared in the late 1980s to describe network connection 

management software, but did not come into widespread use until the mid 1990s, when network 

technology had achieved sufficient penetration and visibility. By that time middleware had 

evolved into a much richer set of paradigms and services offered to help make it easier and more 

manageable to build distributed applications. The term was associated mainly with relational 

databases for many practitioners in the business world through the early 1990s, but by the mid-

1990s this was no longer the case. Concepts similar to today's middleware previously went under 

the names of network operating systems, distributed operating systems and distributed 

computing environments.  

Cronus was the major first distributed object middleware system (see Cronus), and Clouds (See 

Clouds) and Eden were contemporaries. RPC was first developed circa 1982 by Birrell and 

Nelson. Early RPC systems that achieved wide use include those by Sun in its Open Network 

Computing (ONC) and in Apollo’s Network Computing System (NCS). Open Software 

Foundation’s Distributed Computing Environment (DCE) included an RPC that was an 

adaptation of Apollo’s that was provided by Hewlett Packard (which acquired Apollo). Quality 

Objects (QuO) was the first middleware framework to provide general-purpose and extensible 

quality of service for distributed objects. TAO was the first major CORBA system to provide 

quality of service, namely real-time performance, directly in the ORB. The OMG was formed in 

1989, and is presently the largest industry consortium of any kind. The Message Oriented 

Middleware Association (MOMA) was formed in 1993, and MOM became a widely-used kind 

of middleware by the late 1990s. In the late 1990s HTTP became a major building block for 

various kinds of middleware, due to its pervasive deployment and its ability to get through most 

firewalls. 

 

III.1.2 Definition of Middleware 
 
 
Middleware is a class of software technologies designed to help manage the complexity and 

heterogeneity inherent in distributed systems. It is defined as a layer of software above the 



69 

 

operating system but below the application program that provides a common programming 

abstraction across a distributed system. In doing so, it provides a higher-level building block for 

programmers than Application Programming Interfaces (APIs) such as sockets that are provided 

by the operating system. This significantly reduces the burden on application programmers by 

relieving them of this kind of tedious and error-prone programming. Middleware is sometimes 

informally called “plumbing” because it connects parts of a distributed application with data 

pipes and then passes data between them. Middleware frameworks are designed to mask some of 

the kinds of heterogeneity that programmers of distributed systems must deal with. They always 

mask heterogeneity of networks and hardware. Most middleware frameworks also mask 

heterogeneity of operating systems or programming languages, or both. A few such as CORBA 

also mask heterogeneity among vendor implementations of the same middleware standard. 

Finally, programming abstractions offered by middleware can provide transparency with respect 

to distribution in one or more of the following dimensions: location, concurrency, replication, 

failures, and mobility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The classical definition of an operating system is “the software that makes the hardware 

useable.” Similarly, middleware can be considered to be the software that makes a distributed 

system programmable. Just as a bare computer without an operating system could be 



70 

 

programmed with great difficulty, programming a distributed system is in general much more 

difficult without middleware, especially when heterogeneous operation is required. Likewise, it 

is possible to program an application with an assembler language or even machine code, but 

most programmers find it far more productive to use high-level languages for this purpose, and 

the resulting code is of course also portable. 

 

III.1.2 Categories of Middleware 

 
There are a small number of different kinds of middleware that have been developed. These vary 

in terms of the programming abstractions they provide and the kinds of heterogeneity they 

provide beyond network and hardware. 

 

III.1.2.1 Distributed Tuples 
 
A distributed relational databases offers the abstraction of distributed tuples, and are the most 

widely deployed kind of middleware today. Its Structured Query Language (SQL) allows 

programmers to manipulate sets of these tuples (a database) in an English-like language yet with 

intuitive semantics and rigorous mathematical foundations based on set theory and predicate 

calculus. Distributed relational databases also offer the abstraction of a transaction. Distributed 

relational database products typically offer heterogeneity across programming languages, but 

most do not offer much, if any, heterogeneity across vendor implementations. Transaction 

Processing Monitors (TPMs) are commonly used for end-to-end resource management of client 

queries, especially server-side process management and managing multi-database transactions. 

Linda is a framework offering a distributed tuple abstraction called Tuple Space (TS). Linda’s 

API provides associative access to TS, but without any relational semantics. Linda offers spatial 

decoupling by allowing depositing and withdrawing processes to be unaware of each other’s 

identities. It offers temporal decoupling by allowing them to have non-overlapping lifetimes. Jini 

is a Java framework for intelligent devices, especially in the home. Jini is built on top of Java 

Spaces, which is very closely related to Linda’s TS. 

 

III.1.2.2 Remote Procedure Call 
 
Remote procedure call (RPC; see Remote Procedure Calls) middleware extends the procedure 

call interface familiar to virtually all programmers to offer the abstraction of being able to invoke 

a procedure whose body is across a network. RPC systems are usually synchronous, and thus 



71 

 

offer no potential for parallelism without using multiple threads, and they typically have limited 

exception handling facilities. 

 
III.1.2.3 Message-Oriented Middleware 

 
 
Message-Oriented Middleware (MOM) provides the abstraction of a message queue that can be 

accessed across a network. It is a generalization of the well-known operating system construct: 

the mailbox. It is very flexible in how it can be configured with the topology of programs that 

deposit and withdraw messages from a given queue. Many MOM products offer queues with 

persistence, replication, or real-time performance. MOM offers the same kind of spatial and 

temporal decoupling that Linda does. 

 
 
III.1.2.4 Distributed Object Middleware 
 
Distributed object middleware provides the abstraction of an object that is remote yet whose 

methods can be invoked just like those of an object in the same address space as the caller. 

Distributed objects make all the software engineering benefits of object-oriented techniques 

encapsulation, inheritance, and polymorphism available to the distributed application developer. 

The Common Object Request Broker Architecture (CORBA; see Common Object Request 

Broker Architecture) is a standard for distributed object computing. It is part of the Object 

Management Architecture (OMA), developed by the Object Management Group (OMG), and is 

the broadest distributed object middleware available in terms of scope. It encompasses not only 

CORBA’s distributed object abstraction but also other elements of the OMA which address 

general purpose and vertical market components helpful for distributed application developers. 

CORBA offers heterogeneity across programming language and vendor implementations. 

CORBA (and the OMA) is considered by most experts to be the most advanced kind of 

middleware commercially available and the most faithful to classical object oriented 

programming principles. Its standards are publicly available and well defined. DCOM is a 

distributed object technology from Microsoft that evolved from its Object Linking and 

Embedding (OLE) and Component Object Model (COM). DCOM’s distributed object 

abstraction is augmented by other Microsoft technologies, including Microsoft Transaction 

Server and Active Directory. DCOM provides heterogeneity across language but not across 

operating system or tool vendor. COM+ is the next-generation DCOM 



72 

 

that greatly simplifies the programming of DCOM. SOAP is a distributed object framework from 

Microsoft that is based on XML and HyperText Transfer Protocols (HTTP). Its specification is 

public, and it provides heterogeneity across both language and vendor. Microsoft’s distributed 

object framework .NET also has heterogeneity across language and vendor among its stated 

goals. 
 
Java has a facility called Remote Method Invocation (RMI) that is similar to the distributed 

object abstraction of CORBA and DCOM. RMI provides heterogeneity across operating system 

and Java vendor, but not across language. 
 
However, supporting only Java allows closer integration with some of its features, which can 

ease programming and provide greater functionality. Marketplace Convergence of the Concepts 

.The categories of middleware above are blurred in the marketplace in a number of ways. 

Starting in the late 1990s, many products began to offer APIs for multiple abstractions, for 

example distributed objects and message queues, managed in part by a TPM. TPMs in turn often 

use RPC or MOM as an underlying transport while adding management and control facilities. 

Relational database vendors have been breaking the relational model and the strict separation of 

data and code by many extensions, including RPC-like stored procedures. To complicate matters 

further, Java is being used to program these stored procedures. Additionally, some MOM 

products offer transactions over multiple operations on a message queue. Finally, distributed 

object systems typically offer event services or channels which are similar to MOM in term of 

architecture, namely topology and data flow. 

 

III.1.2.5 Middleware and Legacy Systems 

 
 
Middleware is sometimes called a “glue” technology because it is often used to integrate legacy 

components. It is essential for migrating mainframe applications that were never designed to 

interoperate or be networked to service remote requests. Middleware is also very useful for 

wrapping network devices such as routers and mobile base stations to offer network integrators 

and maintainers a control API that provides interoperability at the highest level. Distributed 

object middleware is particularly well-suited for legacy integration, due to its generality. In short, 

it provides a very high 
 



73 

 

lowest common denominator of interoperability. CORBA, in particular, is typically used for this 

because it supports the most kinds of heterogeneity and thus allows the legacy components to be 

used as widely as possible. Programming with Middleware Programmers do not have to learn a 

new programming language to program middleware. Rather, they use an existing one they are 

familiar with, such as C++ or Java. There are three main ways in which middleware can be 

programmed with existing languages. The first is where the middleware system provides a 

library of functions to be called to utilize the middleware; distributed database systems and Linda 

do this. The second is through an external interface definition language (IDL; see Interface 

Definition Language). In this approach, the IDL file describes the interface to the remote 

component, and a mapping from the IDL to the programming language is used for the 

programmer to code to. The third way is for the language and runtime system to support 

distribution natively; for example, Java’s Remote Method Invocation (RMI). 

 

III.1.2.6 Middleware and Layering 
 
There may be multiple layers of middleware present in a given system configuration. For 

example, lower-level middleware such as a virtually synchronous atomic broadcast service (see 

Virtual Synchrony) can be used directly by application programmers. However, sometimes it is 

used as a building block by higher-level middleware such as CORBA or Message-Oriented 

Middleware to provide fault tolerance or load balancing or both. Note that most of the 

implementation of a middleware system is at the “Application” Layer 7 in the OSI network 

reference architecture, though parts of it is also at the “Presentation” Layer 6 (see Network 

Protocols). Thus, the middleware is an “application” to the network protocols, which are in the 

operating system. The “application” from the middleware’s perspective is above it. 

 

III.1.2.7 Middleware and Resource Management 
 
The abstractions offered by various middleware frameworks can be used to provide resource 

management in a distributed system at a higher level than is otherwise possible. This is because 

these abstractions can be designed to be rich enough to subsume the three kinds of low-level 

physical resources an operating system manages: communications, processing, and storage 

(memory and disks). Middleware’s abstractions also are from an end-to-end perspective, not just 

that of a single host, which allows for a more global and complete view to a resource 

management system. All middleware programming abstractions by definition subsume 



74 

 

communications resources, but others vary in how well they incorporate processing and storage. 

cleanly integrate all three kinds of resource into a coherent package. This completeness helps 

distributed resource management but also makes it easier to provide different kinds of distributed 

transparencies such as mobility transparency. 

 

III.1.2.8 Middleware and Quality of Service Management 
 
Distributed systems are inherently very dynamic, which can make them difficult to program. 

Resource management is helpful, but is generally not enough for most distributed applications. 

Starting in the late 1990s, distributed systems research has begun to focus on providing 

comprehensive quality of service (QoS), an organizing concept referring to the behavioral 

properties of an object or system, to help manage the dynamic nature of distributed systems. The 

goal of this research is to capture the application’s high-level QoS requirements and then 

translate them down to low-level resource managers. QoS can help runtime adaptively, 

something in the domain of classical distributed systems research. But it can also help the 

applications evolve over their lifetime to handle new requirements or to operate in new 

environments; issues more in the domain of software engineering but of crucial importance to 

users and maintainers of distributed systems. Middleware is particularly well-suited to provide 

QoS at an application program’s level of abstraction. Also, the abstractions middleware systems 

offer can often be extended to include a QoS abstraction while still being a coherent abstraction 

understandable by and useful to the programmer. Distributed object middleware is particularly 

well-suited for this due to its generality in the resources it encapsulates and integrates. Providing 

QoS to applications can help them operate acceptably when usage patterns or available resources 

vary over a wide spectrum and with little predictability. This can help make the environment 

appear more predictable to the distributed application layer, and help the applications to adapt 

when this predictability is impossible to achive. QoS can also help applications be modifiable in 

a reasonable amount of time, because their assumptions about the environment are not hard-

coded into their application logic, and thus make them less expensive to maintain. Middleware 

that includes QoS abstractions can enable these things by making an application’s assumptions 

about QoS, such as usage patterns and required resources, explicit while still providing a high-

level building block for programmers. Further, QoS enabled middleware is a high-level building 

block which shields distributed applications from the low-level protocols and APIs that 

ultimately provide QoS.  



75 

 

CHAPTER IV: BASIC CONCEPTS IN DISTRIBUTED SYSTEMS 
 

IV.1 STANDARDS & PROTOCOLS 

 

A distributed software application is one with two or more distinct components which can 

perform more or less autonomously (individually) and yet also interact together to perform an 

additional series of tasks together. These "parts" might reside on different machines, or different 

networks. The components that make up the WWW give us a classic example of a distributed 

application. 

 
Just like human beings, software programs typically don't exist in isolation - rather they 

interoperate with other software programs to make up applications, and then applications 

interoperate with other applications to make up systems. And just as with human social process, 

software programs rely on certain guides that help to establish rules, patterns, and common 

understandings that help to govern their interaction. 

 
This post introduces standards and protocols which are as important in creating a distributed 

software system as the actual software components themselves. Indeed software is defined in 

large part by different individual programs - logical instructions written in human readable 

languages and converted into machine code to effect an electronic process. But there is more to 

applications like the WWW, like your email system, or like MSN instant messenger than simply 

the software programs. While some of the rules of software can be defined by software 

programs, other rules which help to govern the interaction of those programs, can be pre-

established and "pre-written" outside the actual programs as standards and protocols. 

 
A Standard is a mutual understanding, a shared meaning that is typically derived from the 

adoption of well-established declarations (but can also be established through social 

conventions). 

 
A Protocol is a mutually understand method of operating. 
 
 
Standards and protocols establish rules which act as positive constraints on a system, providing a 

framework for that system, such that the components within it can operate along more strict and 

manageable interactions. They limit the surprises that the components in a software system has 



76 

 

to deal with. That may seem confusing at first but if you think about some real world examples 

you'll start to get it.Think of our roads and the system we have developed for driving. An 

example of a standard would be the regulation that says a street light should have three different 

colored lights, a certain hue of green, amber, and red. An example of a protocol would be how to 

respond when you encounter each of these scenarios. These help us to navigate the road systems 

in coordination. We also have examples of standards and protocols in civil society. Our 

constitution exists to establish standards, or guidelines, for managing the affairs of our country. 

Without some constraints to provide some structure our society might descend into chaos -and 

that's what would happen to a distributed software system if it had no framework to work within. 

 
By the same token too much structure isn't good either. It is difficult to grow and adapt in a 

system with too many rules. Adding too much structure can even create a bias in the system 

especially when it is administered by a bureaucratic few. 

 

IV.2 COUPLING 

 

Coupling refers to the degree of direct knowledge that one class has of another. Coupling is the 

strength of interconnection between two software modules: the higher the strength of 

interconnection, the higher the coupling. This is not meant to be interpreted as encapsulation vs. 

non-encapsulation. It is not a reference to one class's knowledge of another class's attributes or 

implementation, but rather knowledge of that other class itself. 

 
Strong coupling occurs when a dependent class contains a pointer directly to a concrete class 

which provides the required behavior. The dependency cannot be substituted, or its "signature" 

changed, without requiring a change to the dependent class. Loose coupling occurs when the 

dependent class contains a pointer only to an interface, which can then be implemented by one or 

many concrete classes. The dependent class's dependency is to a "contract" specified by the 

interface; a defined list of methods and/or properties that implementing classes must provide. 

Any class that implements the interface can thus satisfy the dependency of a dependent class 

without having to change the class. This allows for extensibility in software design; a new class 

implementing an interface can be written to replace a current dependency in some or all 

situations, without requiring a change to the dependent class; the new and old classes can be 

interchanged freely. Strong coupling does not allow this. An indication of the module inter-



77 

 

connection strength (degree of interaction between modules or strength of dependencies between 

modules). Ranges from complete dependence to independence .Depends on 

 
 

 References from one module to another 

 
 Amount of data passed between them 

 
 Amount of control one has over the other 

 

 The complexity of the interface between them 
 
 
IV.2.1 Measuring data element coupling 

 

The degree of the loose coupling can be measured by noting the number of changes in data 

elements that could occur in the sending or receiving systems and determining if the computers 

would still continue communicating correctly. These changes include items such as: 

 
1. adding new data elements to messages 
 
2. changing the order of data elements 
 
3. changing the names of data elements 
 
4. changing the structures of data elements 
 
5. omitting data elements 

 
 
Methods for decreasing coupling 
 
 
Loose coupling of interfaces can be dramatically enhanced when publishers of data transmit 

messages using a flexible file format such as XML or JSON to enable subscribers to publish 

clear definitions of how they subsequently use this data. For example, a subscriber could publish 

the collection of statements used to extract 
 
information from a publisher's messages by sharing the relevant XPath expressions used for data 

transformation, or the JSON Schema. This would allow a responsible data publisher to test 

whether their subscriber's extraction methods would fail when a published format changes. 

 
IV.2.2 Loose coupling 
 
 
Loose coupling of services can be enhanced by reducing the information passed into a service to 

the key data. For example, a service that sends a letter is most reusable when just the customer 



78 

 

identifier is passed and the customer address is obtained within the service. This decouples 

services because services do not need to be called in a specific order (e.g. GetCustomerAddress, 

SendLetter) 

 
Note that loose coupling is not universally positive. If systems are de-coupled in time using 

Message-oriented middleware, it is difficult to also provide transactional integrity. Data 

replication across different systems provides loose coupling (in availability), but creates issues in 

maintaining synchronisation. 

 

IV.2.3 Tightly Coupled 
 
 
A tightly coupled system is a multiprocessor computing system in which the CPUs are 

connected together in such a way that they share some or all of the system’s memory and I/O 

resources. 

 

 

 

 

 

 

 

 

 

 

 

 

Highly coupled designs give products that: 
 

 

Are harder to understand, corrective maintenance is difficult (to determine where the fault is 

located), are difficult to extend, cannot be reused 



79 

 

Minimization of coupling 
 
 
Allows consideration of modules in isolation 

Makes it easier to understand how the module works, to test and modify the module. 

 
 
High-availability clusters are groups of computers that support server applications that can be 

reliably utilized with a minimum of down-time. They operate by harnessing redundant 

computers in groups or clusters that provide continued service when system components fail. 

Without clustering, if a server running a particular application crashes, the application will be 

unavailable until the crashed server is fixed. HA clustering remedies this situation by detecting 

hardware/software faults, and immediately restarting the application on another system without 

requiring administrative intervention, a process known as failover. As part of this process, 

clustering software may configure the node before starting the application on it. For example, 

appropriate filesystems may need to be imported and mounted, network hardware may have to 

be configured, and some supporting applications may need to be running as well. 

 

IV.3 Naming in Distributed System 

 

 Entities, Names, Addresses 
 
An Entity in a distributed system can be pretty much anything. 
 
A Name is a string of bits used to refer to an entity. 
 
The Address is the name of the access point. 

 

 

Identifiers are Special Names 
 

 

• Can we use addresses of access points as regular name for the associated entity? 
 
– access points may change over time 
 
– entities may have several access points 
 
• Identifiers uniquely identify an entity 
 
– An identifier refers to at most one entity. 
 
– Each entity is referred to at most one identifier. 
 
– An identifier always referes to the same entity (never reused) 
 



80 

 

• Example: Telephone Numbers? 

Name Space 
 
 
Names are organized into Name Space. The set of names in a naming system. A naming space 

can be represented as a graph with leaf nodes (containing entity information) and directory 

nodes. Absolute and relative path names are related to a directory node A global name denotes 

the same entity in the system A local name depends on where the name is being used 

 

Naming Systems 
 
Unix/Linux file names 
 
URL’s on the World Wide Web 
 
Types and objects in a C++ or Java program 
 
Computers attached to the Internet 
 
 
Types of Names in Distributed Systems Flat 
 
 

All names are equivalent in name space 
 

 Must be globally unique 
 
 
Hierarchical 
 

 Names (usually) have structure 
 

 Unique only within immediately containing level 
 

 Each level resolved within context of next higher level 
 
 
Flat Name Spaces 
 
 
Need global directory 
 

 May be replicated 
 

 May be partitioned 
 
Not (necessarily) tied to location 
 

 But many challenges Issues of scaling 

 

Hierarchical Approaches 
 
 



81 

 

A flat name space with hierarchical administration 
 

 Top level domain knows all names 
 

 Each sub-domain knows subset of names 

 

 Local names resolved within own subset 
 

 Other names cached as needed 
 
 
 
 
Domain Name System (DNS) 
 
 
Domain Name System (DNS) is a hierarchical distributed naming system for computers, 

services, or any resource connected to the Internet or a private network It associates various 

information with domain name assigned to each of the participating entities. Most prominently, it 

translates easily memorized domain names to the numerical IP addresses needed for the purpose 

of locating computer services and devices worldwide. By providing a worldwide, distributed 

keyword -based redirection service, the Domain Name System is an essential component of the 

functionality of the Internet. 
 
Internet names are structured, not flat 

ccc3.wpi.edu ,update.microsoft.com 
 
Resolution works the same way 
 

 If a name is cached in local name server, try to use it 
 

 If not, go to up the hierarchy one level to find a cached entry etc. 
 

 Difference is that each level knows only its level 
 

 E.g., edu knows wpi but not ccc3 
 
 

IV.4 REPLICATION AND CONSISTENCY 

 

IV.4.1 Consistency 
 
In classical deductive logic, a consistent theory is one that does not contain a contradiction. The 

lack of contradiction can be defined in either semantic or syntactic terms. The semantic 

definition states that a theory is consistent if and only if it has a model, i.e. there exists an 

interpretation under which all formulas in the theory are true. A consistency proof is a 

mathematical proof that a particular theory is consistent. 



82 

 

 

 

In computer science, consistency models are used in distributed systems like distributed shared 

memory systems or distributed data stores (such as a file systems, databases, optimistic 

replication systems or Web caching). The system supports a given model if operations on 

memory follow specific rules. The data consistency model specifies a contract between 

programmer and system, wherein the system guarantees that if the programmer follows the rules, 

memory will be consistent and the results of memory operations will be predictable. 

 

IV.4.2 Replication 
 
Replication in computing involves sharing information so as to ensure consistency between 

redundant resources, such as software or hardware components, to improve reliability, fault-

tolerance, or accessibility. 

 
Motivation Performance Enhancement, Enhanced availability, Fault tolerance, Scalability. 

 
Tradeoff between benefits of replication and work required to keep replicas consistent. 

 
 
Requirements: Consistency Depends upon application. In many applications, we want that 

different clients making (read/write) requests to different replicas of the same logical data item 

should not obtain different results. Replica transparency is desirable for most applications. 

 

Data-Centric Consistency Models 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



83 

 

 

 

The general organization of a logical data store, physically distributed and replicated across 

multiple processes. 

 
Consistency Model is a contract between processes and a data store. If processes follow certain 

rules, then store will work correctly, Needed for understanding how concurrent reads and writes 

behave wrt shared data. Relevant for shared memory multiprocessors: cache coherence 

algorithms 

 
Shared databases, files 
 
 

 independent operations 
 

 transactions 
 

 

Strict Consistency 
 
 
Any read on a data item x returns a value corresponding to the result of the most recent write on 

x. 

 
A strictly consistent store 
 
 
Behavior of two processes, operating on the same data item. 
 
 
Sequential Consistency 
 
 
Sequential consistency: the result of any execution is the same as if the read and write operations 

by all processes were executed in some sequential order and the operations of each individual 

process appear in this sequence in the order specified by its program. 

 

 
 
 
 
 
 
 
 



84 

 

a) A sequentially consistent data store. 
 
 
b) A data store that is not sequentially consistent. 
 
 
Weak Consistency 
 
 
Properties 
 
 

 Accesses to synchronization variables associated with a data store are sequentially 

consistent 

 No operation on a synchronization variable is allowed to be performed until all previous 

writes have been completed everywhere 

 No read or write operation on data items are allowed to be performed until all previous 

operations to synchronization variables have been performed. 
 
 

 

Release Consistency 
 
 
Rules 
 
 

 Before a read or write operation on shared data is performed, all previous acquires done 

by the process must have completed successfully. 

 Before a release is allowed to be performed, all previous reads and writes by the process 

must have completed 

 Accesses to synchronization variables are FIFO consistent (sequential consistency is not 
required). 

 
 
 
 
 
 
 
 
 
 
 
 



85 

 

Summary of Consistency Models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

IV.5 FAULT TOLERANCE 

 

IV.5.1 introduction 
 
 
In the past, fault-tolerant computing was the exclusive domain of very specialized organizations 

such as telecom companies and financial institutions. With business-to-business transactions 

taking place over the Internet, however, we are interested not only in making sure that things 

work as intended, but also, when the inevitable failures do occur, that the damage is minimal. 

 
Unfortunately, fault-tolerant computing is extremely hard, involving intricate algorithms for 

coping with the inherent complexity of the physical world. As it turns out, that world conspires 

against us and is constructed in such a way that, generally, it is simply not possible to devise 

absolutely foolproof, 100% reliable software. No matter how hard we 
 
try, there is always a possibility that something can go wrong. The best we can do is to reduce 

the probability of failure to an "acceptable" level. Unfortunately, the more we strive to reduce 

this probability, the higher the cost. 



86 

 

There is much confusion about the terminology used with fault tolerance. For example, the terms 

"reliability" and "availability" are often used interchangeably, but do they always mean the same 

thing? What about "faults" and "errors"? In this section, we introduce the basic concepts behind 

fault tolerance. 

 
Fault tolerance is the ability of a system to perform its function correctly even in the presence 

of internal faults. The purpose of fault tolerance is to increase the dependability of a system. A 

complementary but separate approach to increasing dependability is fault prevention. This 

consists of techniques, such as inspection, whose intent is to eliminate the circumstances by 

which faults arise. 

 

IV.5.2 Faults, Errors, and Failures 
 
 
Implicit in the definition of fault tolerance is the assumption that there is a specification of what 

constitutes correct behavior. A failure occurs when an actual running system deviates from this 

specified behavior. The cause of a failure is called an error. An error represents an invalid system 

state, one that is not allowed by the system behavior specification. The error itself is the result of 

a defect in the system or fault. In other words, a fault is the root cause of a failure. That means 

that an error is merely the symptom of a fault. A fault may not necessarily result in an error, but 

the same fault may result in multiple errors. Similarly, a single error may lead to multiple 

failures. 

 
For example, in a software system, an incorrectly written instruction in a program may 

decrement an internal variable instead of incrementing it. Clearly, if this statement is executed, it 

will result in the incorrect value being written. If other program statements then use this value, 

the whole system will deviate from its desired behavior. In this case, the erroneous statement is 

the fault, the invalid value is the error, and the failure is the behavior that results from the error. 

Note that if the variable is never read after being written, no failure will occur. Or, if the invalid 

statement is never executed, the fault will not lead to an error. Thus, the mere presence of errors 

or faults does not necessarily imply system failure. 

 
At the heart of all fault tolerance techniques is some form of masking redundancy. This means 

that components that are prone to defects are replicated in such a way that if a component fails, 



87 

 

one or more of the non-failed replicas will continue to provide service with no appreciable 

disruption. There are many variations on this basic theme. 

 

IV.5.3 Reliability & Availability. 
 
The two most common ways the industry expresses a system’s ability to tolerate failure are 

reliability and availability. 
 
Reliability is the likelihood that a system will remain operational (potentially despite failures) 

for the duration of a mission. For instance, the requirement might be stated as a 0.999999 

availability for a 10-hour mission. In other words, the probability of failure during the mission 

may be at most 10-6.Very high reliability is most important in critical applications such as the 

space shuttle or industrial control, in which failure could mean loss of life. 
 
Availability expresses the fraction of time a system is operational. A 0.999999 availability 

means the system is not operational at most one hour in a million hours. It is important to note 

that a system with high availability may in fact fail. However, its recovery time and failure 

frequency must be small enough to achieve the desired availability. High availability is important 

in many applications, including airline reservations and telephone switching,in which every 

minute of downtime translates into significant revenue loss. 

 

IV.5.4 Fault Classifications 
 
 
Based on duration, faults can be classified as temporary or permanent. A transient fault will 

eventually disappear without any apparent intervention, whereas a permanent one will remain 

unless it is removed by some external agency. While it may seem that permanent faults are more 

severe, from an engineering perspective, they are much easier to diagnose and handle. A 

particularly problematic type of transient fault is the intermittent fault that recurs, often 

unpredictably. 

 
A different way to classify faults is by their underlying cause. Design faults are the result of 

design failures, like our coding example above. While it may appear that in a carefully designed 

system all such faults should be eliminated through fault prevention, this is usually not realistic 

in practice. For this reason, many fault-tolerant systems are built with the assumption that design 

faults are inevitable, and theta mechanisms need to be put in place to protect the system against 

them. Operational faults, on the other hand, are faults that occur during the lifetime of the system 



88 

 

and are invariably due to physical causes, such as processor failures or disk crashes. 

 
Finally, based on how a failed component behaves once it has failed, faults can be classified into 

the following categories: 

 

 Crash faults -- the component either completely stops operating or never returns to a 

valid state; 
 

 Omission faults -- the component completely fails to perform its service; 
 

 Timing faults -- the component does not complete its service on time; 
 

 Byzantine faults -- these are faults of an arbitrary nature. 
 
 
IV.5.5 Failure Models In Distributed Systems 
 
 
In this part of the paper, some failure models in distributed systems wikk be given. In 
 
all of these scenarios, clients use a collection of servers. 

 

Crash: Server halts, but was working ok until then, e.g. O.S. failure. 
 
 
Omission: Server fails to receive or respond or reply, e.g. server not listening or buffer 
 
overflow. 
 
 
Timing: Server response time is outside its specification, client may give up. 
 
 
Response: Incorrect response or incorrect processing due to control flow out of synchronization. 

 
Arbitrary value (or Byzantine): Server behaving erratically (iregurally), for example providing 

arbitrary responses at arbitrary times. Server output is inappropriate but it is not easy to 

determine this to be incorrect. Duplicated message due to buffering problem maw be given as an 

example. Alternatively, there may be a malicious element involved. 

 

After giving the concepts about the failure models, some of the examples about failure models 

are shown below: 

 
Case: Client unable to locate server, e.g. server down, or server has changed. 
 
Solution: Use an exception handler, but this is not always possible in the programming language 



89 

 

used. 

 
Case: Client request to server is lost. 
 
 
Solution: Use a timeout to await server reply, then re-send, but be careful about idempotent 

operations. If multiple requests appear to get lost assume ‘cannot locate server’ error. 

 
Case: Server crash after receiving client request. Problem may be not being able to tell if request 

was carried out (e.g. client requests print page, server may stop before or after printing, before 

acknowledgement) 

 

Solutions: Rebuild server and retry client request (assuming ‘at least once’ semantics for 

request). Give up and report request failure (assuming ‘at most once’ semantics) what is usually 

required is exactly once semantics, but this difficult to guarantee. 

 
Case: Server reply to client is lost. 
 
 
Solution: Client can simply set timer and if no reply in time assume server down, request lost or 

server crashed during processing request. 

 

IV.6 Validation and verification 

 

We originally proposed trace and replica-based validation for Web and application servers in 

Internet services .Trace-based validation is similar in flavor to fault diagnosis approaches that 

maintain statistical models of ``normal'' component behavior and dynamically inspect the service 

execution for deviations from this behavior. These approaches typically focus on the data flow 

behavior across the systems components, whereas trace-based validation inspects the actual 

responses coming from components and can do so at various semantic levels. 

 

Replica-based validation has been used before to tolerate Byzantine(complicated) failures and 

malicious attacks. In this context, replicas are a permanent part of the distributed system and 

validation is constantly performed via voting. Model-based validation is loosely related to two 

approaches to software debugging: model checking and assertion checking. Besides its focus on 

human mistakes, model-based validation differs from other assertion-checking efforts in that our 



90 

 

assertions are external to the component being validated. Model-based validation differs from 

model checking in that it validates components dynamically based on their behavior, rather than 

statically based on their source codes. 

 

IV.7 Scheduling and Load Balancing 

 

Scheduling and load balancing techniques are crucial for implementing efficient parallel and 

distributed applications and for making best use of parallel and distributed systems. These 

techniques can be provided either at the application level or at the system level. At the 

application level, the mapping of distributed and parallel applications on to infrastructures and 

the development of dynamic load balancing algorithms that are able to exploit the particular 

characteristics and the actual utilization of the underlying system are of particular relevance. 

 

IV.8 Security 

 

Security in simple terms means protection given to anything such as assets, information, 

property and human beings. The application of safeguards to protect data/keeping data safe 

 
e.g. use of passwords to prevent access to data from accidental or malicious modification, 

destruction or damage or from unauthorised access. 

 
Purpose of a Security 
 
 
Confidentiality: data access is confined to those with specified authority to view the data. 
 
 
Integrity: all system assets are operating correctly according to specification and in the way the 

current user believes them to be operating. 

 
Availability: information is delivered to the right person, when it is needed. 
 
 

 Privacy 
 
 
Some data should only be accessed by authorised personnel have a responsibility not to disclose 

the private data to others. e.g. in a doctors surgery the doctors may have access to patients 

clinical data and general data but the receptionists will only have access to the general data 



91 

 

CHAPTER V. BASIC PROBLEMS AND CHALLENGES IN DISTRIBUTED SYSTEMS 
 

V.1 TRANSPARENCY 

 

Concealment of the separation of the components of a distributed system (single image view). 

 
There are a number of forms of transparency 
 
 

 Access: Local and remote resources accessed 
 

 Location: Users unaware of location of resources 
 

 Migration: Resources can migrate without name change 
 

 Replication: Users unaware of existence of multiple copies 
 

 Failure: Users unaware of the failure of individual components 
 

 Concurrency: Users unaware of sharing resources with others 
 
 
Is transparency always desirable? Is it always possible? 
 
 

V.2 SCALABILITY 

 

A system is said to be scalable if it can without suffering a noticeable loss of complexity . Scale 

has three dimensions: 

 

Handle the addition of users and resources performance or increase in administrative 

 
 Size: number of users and resources (problem: overloading) 

 
 Geography: distance between users and resources (problem: communication) 

 
 

 Administration: number of organizations that exert administrative control over parts of 

the system (problem: administrative mess) 

 Note: 
 

 Scalability often conflicts with (small system) performance 
 

 Claim of scalability is often abused. 
 

 

 

 



92 

 

Techniques for scaling 
 

 Decentralization 
 

 Hiding communication latencies (asynchronous communication, reduce communication) 

 Distribution (spreading data and control around) 
 

 Replication (making copies of data and processes) 
 
 

V.3 DECENTRALIZATION 

 

Avoid centralizing 
 

 Services (e.g., single server) 
 

 Data (e.g., central directories) 
 

 Algorithms (e.g., based on complete information). 
 
With regards to algorithms: 
 

 Do not require machine to hold complete system state 
 

 Allow nodes to make decisions based on local info 
 

 Algorithms must survive failure of nodes 
 

 No assumption of a global clock 
 
 
 
 



93 

 

CHAPTER VI: DISTRIBUTED ALGORITHMS 
 
 
A distributed algorithm is an algorithm, run on a distributed system, that does not assume the 

previous existence of a central coordinator. 

 

VI .1 Election Algorithms 

 

Many distributed algorithms such as mutual exclusion and deadlock detection require a 

coordinator process.When the coordinator process fails, the distributed group of processes must 

execute an election algorithm to determine a new coordinator process.These algorithms will 

assume that each active process has a unique priority id. 

 
 

 The coordinator election problem is to choose a process from among a group of 

processes on different processors in a distributed system to act as the central coordinator. 

 An election algorithm is an algorithm for solving the coordinator election problem. By 

the nature of the coordinator election problem, any election algorithm must be a 

distributed algorithm. 

 
 A group of processes on different machines need to choose a coordinator 

 
 A peer to peer communication: every process can send messages to every other process. 

 Assume that processes have unique IDs, such that one is highest 
 

 Assume that the priority of process Pi is i 

 

VI .1.1 Bully Algorithm 
 
 
At any moment, a process can receive an election message from one of its lower-numbered 

colleagues.The receiver sends an OK back to the sender and conducts its own 

election.Eventually only the bully process remains. The bully announces victory to all processes 

in the distributed group. 

Background: any process Pi sends a message to the current coordinator; if no response in T time 

units, Pi tries to elect itself as leader. Details follow: 

 
Algorithm for process Pi that detected the lack of coordinator 

 



94 

 

 Process Pi sends an “Election” message to every process with higher priority.  
 If no other process responds, process Pi starts the coordinator code running and sends a 

message to all processes with lower priorities saying “Elected Pi”  
 Else, Pi waits for T’ time units to hear from the new coordinator, and if there is no 

response  start from step (1) again. 

 
Algorithm for other processes (also called Pi) 

 

If Pi is not the coordinator then Pi may receive either of these messages from Pj 

 

if Pi sends “Elected Pj”; [this message is only received if i < j] 

 

Pi updates its records to say that Pj is the coordinator. 

 

Else if Pj sends “election” message (i > j) 

 

Pi sends a response to Pj saying it is alive 
 
 

Pi starts an election. 
 
 
VI .1.2 Election In A Ring => Ring Algorithm. 
 
 
Assume that processes form a ring: each process only sends messages to the next process in the 

ring 

 
3. Active list: its info on all other active processes 
 
 
4. Assumption: message continues around the ring even if a process along the way has crashed. 
 
Background: any process Pi sends a message to the current coordinator; if no response in T time 

units, Pi initiates an election 

 

1. initialize active list to empty. 
 

2. Send an “Elect(i)” message to the right. + add i to active list. 
 
 
If a process receives an “Elect(j)” message 
 
 

(a) this is the first message sent or seen 

initialize its active list to [i,j]; send “Elect(i)” + send “Elect(j)” 
 



95 

 

 
(b) if i != j, add i to active list + forward “Elect(j)” message to active list 

 
 

(c) otherwise (i = j), so process i has complete set of active processes in its 
 
active list. 
 

=> choose highest process ID + send “Elected (x)” message to neighbor 
 
 
If a process receives “Elected(x)” message, set coordinator to x 
 
 
Bully Algorithm Example: 
 

 

 

 

 

 

 

 

 

 

Process 4 notices 7 down. 
 

Process 4 holds an election. 
 

Process 5 and 6 respond, telling 4 to stop. 
 

Now 5 and 6 each hold an election. 
 
 



96 

 

o Process 6 tells process 5 to stop. 
 

o Process 6 (the bully) wins and tells everyone. 
 

o If processes 7 comes up, starts elections again. 
 
 
A Ring Algorithm 
 
Assume the processes are logically ordered in a ring {implies a successor pointer and an active 

process list} that is unidirectional. 

 
When any process, P, notices that the coordinator is no longer responding it initiates an election: 

 
1.P sends message containing P’s process id to the next available successor. At each active 

process, the receiving process adds its process number to the list of processes in the message and 

forwards it to its successor. 

 
3. Eventually, the message gets back to the sender. 
 
 
4. The initial sender sends out a second message letting everyone know who the coordinator is 

{the process with the highest number} and indicating the current members of the active list of 

processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Even if two ELECTIONS start at once, everyone will pick the same leader. 
 
 
 
 
 



97 

 

VI.2 MUTUAL EXCLUSION 

  
o To guarantee consistency among distributed processes that are accessing shared memory, it 

is necessary to provide mutual exclusion when accessing a critical section. 
 
o Assume n processes. 

 
 
A Centralized Algorithm for Mutual Exclusion 
 
 
Assume a coordinator has been elected. 
 
 

 A process sends a message to the coordinator requesting permission to enter a critical 

section. If no other process is in the critical section, permission is granted. 

 

 If another process then asks permission to enter the same critical region, the coordinator 

does not reply (Or, it sends “permission denied”) and queues the request. 
 

 When a process exits the critical section, it sends a message to the coordinator. 
 
 
The coordinator takes first entry off the queue and sends that process a message 
 
granting permission to enter the critical section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Distributed Algorithm for Mutual Exclusion 
 



98 

 

Ricart and Agrawala algorithm (1981) assumes there is a mechanism for “totally ordering of all 

events” in the system (e.g. Lamport’s algorithm) and a reliable message system. 

 
1. A process wanting to enter critical sections (cs) sends a message with (cs name, process 

id, current time) to all processes (including itself). 
 

2. When a process receives a cs request from another process, it reacts based on its current 

state with respect to the cs requested. There are three possible cases 
 

3. If the receiver is not in the cs and it does not want to enter the cs, it sends an OK message 

to the sender. 
 

4. If the receiver is in the cs, it does not reply and queues the request. 
 

5. If the receiver wants to enter the cs but has not yet, it compares the timestamp of the 

incoming message with the timestamp of its message sent to everyone. {The lowest 

timestamp wins.} If the incoming timestamp is lower, the receiver sends an OK message 

to the sender. If its own timestamp is lower, the receiver queues the request and sends 

nothing. 
 

6. After a process sends out a request to enter a cs, it waits for an OK from all the other 

processes. When all are received, it enters the cs. 
 

7. Upon exiting cs, it sends OK messages to all processes on its queue for that cs and deletes 

them from the queue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



99 

 

VI.3 FAULT-TOLERANT ALGORITHM 

 

Paxos 
 
 
Paxos is a popular fault-tolerant distributed consensus algorithm. It allows a globally consistant 

(total) order to be assigned to client messages (actions). Much of what is summarized here is 

from Lamport's Paxos Made Simple but I tried to simplify it substantially. Please refer to that 

paper for more detail and definitive explanations. The goal of a distributed consensus algorithm 

is to allow a set of computers to all agree on a single value that one of the nodes in the system 

proposed (as opposed to making up a random value). The challenge in doing this in a distributed 

system is that messages can be lost or machines cn fail. Paxos guarantees that a set of machines 

will chose a single proposed value as long as a majority of systems that participate in the 

algorithm are available. The setting for the algorithm is that of a collection of processes that can 

propose values. The algorithm has to ensure that a single one of those proposed values is chosen 

and all processes should learn that value. 

 

There are three classes of agents: 
 
 

1.Proposers 
 

2.Acceptors 
 

3.Learners 

 

VI.3.1The Paxos algorithm 
 
 
The Paxos algorithm operates in two phases: 
 
 
Phase 1: Prepare: send a proposal request 
 
 
Proposer: 
 
A proposer chooses a proposal number n and sends a prepare request to a majority of acceptors. 

The number n is stored in the proposer's stable storage so that the proposer can ensure that a 

higher number is used for the next proposal (even if the proposer process restarts). 

 
 

 



100 

 

Acceptor: 
 
 

 If an acceptor has received a proposal greater than n in the past, then it ignores this 

prepare(n) request. 
 

 The acceptor promises never to accept a proposal numbered less than n. 
 

 The acceptor replies to the proposer with a past proposal that it has accepted previously 

that had the highest number less than n: reply(n',v'). 

 

If a proposer receives the requested responses to its prepare request from a majority of the 

acceptors, then it can issue a proposal with number n and value v, where v is the value of the 

highest-numbered proposal among the responses or any value selected by the proposer if the 

responding acceptors reported no proposals. 

 
Phase 2: Accept: send a proposal (and then propagate it to learners after acceptance) 
 

 

Proposer: 
 
A proposer can now issue its proposal. It will send a message to a set of acceptors stating that its 

proposal should be accepted (an accept(n,v) message). If the proposer receives a response to its 

prepare(n) requests from a majority of acceptors, it then sends an accept(n, v) request to each of 

those acceptors for a proposal numbered n with a value v, where v is the highest-numbered 

proposal among the responses, or is any value if the responses reported no proposals. 

 

 

Acceptor: 
 
If an acceptor receives an accept(n, v) request for a proposal numbered n, it accepts the proposal 

unless it has already responded to a prepare request having a number greater than n. 

 
The acceptor receives two types of requests from proposers: prepare and accept requests. Any 

request can be ignored. An acceptor only needs to remember the highest-numbered proposal that 

it has ever accepted and the number of the highest-numbered prepare request to which it has 

responded. The acceptor must store these values in stable storage so they can be preserved in 

case the acceptor fails and has to restart. 

 

A proposer can make multiple proposals as long as it follows the algorithm for each one. 



101 

 

VI.4 CONSENSUS ALGORITHM 

 

Now that the acceptors have a proposed value, we need a way to learn that a proposal has been 

accepted by a majority of acceptors. The learner is responsible for getting this information. Each 

acceptor, upon accepting a proposal, forwards it to all the learners. The problem with doing this 

is the potentially large number of duplicate messages: 
 
(number of acceptors) * (number of learners). If desired, this could be optimized. One or more 

"distinguished learners" could be elected. Acceptors will communicate to them 
 
and they, in turn, will inform the other learners. Consensus is the task of getting all 

 

processes in a group to agree on some specific value based on the votes of each processes. All 

processes must agree upon the same value and it must be a value that was submitted by at least 

one of the processes (i.e., the consensus algorithm cannot just invent a value). In the most basic 

case, the value may be binary (0 or 1), which will allow all processes to use it to make a decision 

on whether to do something or not. 

 
With election algorithms, our goal was to pick a leader. With distributed transactions, we needed 

to get unanimous agreement on whether to commit. These are forms of consensus. With a 

consensus algorithm, we need to get unanimous agreement on some value. This is a simple-

sounding problem but finds a surprisingly large amount of use in distributed systems. Any 

algorithm that relies on multiple processes maintaining common state relies on solving the 

consensus problem 

 

Basic properties of Consensus 
 
 
Termination: Every correct node eventually decides 
 
Agreement: No two correct processes decide differently 
 
Validity: Any value decided is a value proposed 
 
Integrity: A node decides at most once 

 

 

 

 

 
 
 



102 

 

VI.5 TERMINATION DETECTION ALGORITHM 

 

In practice, it is often necessary to know when the computation running in a distributed system 

has terminated. For example, it is possible to construct an efficient mutual exclusion algorithm in 

the following way: a first distributed algorithm establishes a spanning tree in the network, while 

a second algorithm circulates a token in a repeated depth-first traversal of the tree. To ensure the 

correctness of mutual exclusion, it is vital that the second algorithm is only started once the first 

algorithm has terminated, resulting in the problem of termination detection. A termination 

detection algorithm involves a computation of its own which should not interfere with the 

underlying computation which it observes. Additionally, it should satisfy two properties: (1) it 
 
should never announce termination unless the underlying computation has in fact terminated.  

 

(2) If the underlying computation has terminated, the termination detection algorithm should 

eventually announce termination. But when is a computation in fact terminated? Answering this 

question means to define an appropriate formal notion of termination. To be general, the states of 

processes are mapped to just two distinct states: active and passive.An active process still 

actively participates in the computation while a passive process does not participate anymore 

unless it is activated by an active process. Activation can only be done using communication. For 

message-passing communication, which we also assume in this paper, a widely accepted 

definition of termination is that (1) all processes are passive and (2) all channels are empty. 

 

 
Problems in the crash-recovery model 
 
Solving the termination detection problem in the crash-recovery model is not an easy task. First 

of all, it is not clear what a sensible definition of termination is in the crash-recovery model. On 

the one hand, the classical (fault-free) definition of termination as mentioned above is clearly not 

suitable: If an active process crashes, there is always the possibility that it recovers later but there 

is no guarantee that it actually will recover. So an algorithm is in the dilemma to either making a 

false detection of termination or to possibly waiting infinitely long (see Figure ). On the other 

hand, the definition used in the crash-stop model is also not suitable: An algorithm might 

announce termination prematurely if an active process which was crashed recovers again.  

 
 
 



103 

 

Failures 
 
Crash-Recovery Model. We assume that processes fail by crashing and may recover 

subsequently. A process may fail and recover more than once. When a process crashes, it stops 

executing its algorithm and cannot send or receive messages. Processes have two types of 

storage: volatile and stable. If a process crashes, it looses the entire contents of its volatile 

storage. Stable storage is not affected by a crash. However, access to stable storage is expensive 

and should be avoided as much as possible.A failure pattern specifies times at which processes 

crash and (possibly) recover.It is a function F from the set of global clock ticks T to the power 

set of processes 2Π. If p ∈ F(t), then process p is crashed at time t. Given a failure pattern F, a 

process p ∈ Π 

– is said to be up at time t, if p _∈ F(t). 

 

– is said to be down at time t, if p ∈ F(t). 

 

– crashes at time t ≥ 1 if p is up at time t − 1 and down at time t. 

 

– recovers at time t ≥ 1 if it is down at time t − 1 and up at time t. 

 

As discussed in Aguilera et al. [1], a process p in the crash-recovery model 

 

belongs to one of the four categories: 

 

– Always-up: Process p never crashes. 
 
– Eventually-up: Process p crashes at least once, but there is a time after which 
 
p is permanently up. 
 
– Eventually-down: There is a time after which process p is permanently down. 
 
– Unstable: Process p crashes and recovers infinitely many times. 
 
Always-up and eventually-up processes are referred to as good processes. Eventually-down and 

unstable processes are referred to as bad processes. We use the phrases up process and live 

process synonymously. In this paper, we assume that communication channels among processes 

are eventually-reliable. A channel from process p to process q is said to be eventually reliable if 

it satisfies the following properties: 

 

– Validity: If p sends a message to q and neither p nor q crashes, then the message 

is eventually delivered to q. 
 
– No Duplication: No message is delivered more than once. 
 



104 

 

– No Creation: No message is delivered unless it was sent. 
 
We also assume that all messages sent by a process are distinct. One way to ensure this is to 

maintain an incarnation number for a process in stable storage. 
 
The incarnation number is incremented whenever the process recovers from a crash and written 

back to stable storage. In addition, there is a sequence number that is stored in volatile storage 

and is incremented whenever the process sends a message. 

 

Each message is piggybacked with the incarnation number and the sequence number, which 

ensures that all messages sent by a process are distinct. 

 
 
Failure Detectors in the Crash-Recovery Model 
 
Many important problems in distributed computing such as consensus, atomic broadcast and 

termination detection are impossible to solve in an asynchronous distributed system when 

processes are unreliable [5]. To that end, Chandra and Toueg [3] introduced the notion of failure 

detector. A failure detector at a process outputs its current view about the operational state (up or 

down) of other processes in the system. Depending on the properties that failure detector output 

has to satisfy, several classes of failure detectors can be defined [3]. With the aid of failure 

detectors, problems such as consensus, atomic broadcast and termination detection become 

solvable in unreliable asynchronous distributed systems that are otherwise impossible to solve.  

 

A failure detector itself is implemented by making certain synchrony assumptions about the 

system [3].The notion of failure detector, which was originally defined for crash-stop failure 

model, has been extended to crash-recovery failure model as well [1]. The failure detector 

defined by Aguilera et al. [1] for crash-recovery failure model, denoted by ♦Se, outputs a list of 

processes which are deemed to be currently up along with an epoch number for each such 

process. The epoch number associated with a process roughly counts the number of times the 

process has crashed and recovered. we use a failure detector with a simpler interface, denoted by 

♦Pcr. The failure detector at a process only outputs a list of processes it currently deems to be up 

(we call this the trust-list). Processes which are not on the trust-list are suspected to be down by 

the failure detector. A suspected process is unsuspected if it is put on the trust-list. This failure 

detector satisfies the following properties: 

 



105 

 

 
– Completeness: Every eventually-down process is eventually permanently suspected by all 

good processes. Every unstable process is suspected and unsuspected 

infinitely often by all good processes. 
 
– Accuracy: Every good process is eventually permanently trusted by all good processes. 

 
 
A failure detector from class ♦Pcr is strictly stronger than a failure detector from class ♦Se 

because, in ♦Se, only one good process is required to be permanently trusted by all good 

processes. Nevertheless ♦Pcr can be implemented under the same approach and the same 

assumptions of partial synchrony made in the original paper of Aguilera et al.[1]. 

 

 

The Termination Detection Problem 
 

 

In the termination detection problem, the system is executing a distributed program, thereby 

generating a distributed computation referred to as underlying computation. A process in the 

system can be in two states with respect to the computation: active or passive. A process can 

execute an internal event of the computation only if it is active. There are three rules that 

describe allowed state changes between active and passive states: 
 
– An active process may become passive at any time. 
 
– A passive process can become active only on receiving a message. 
 
– A process can send a message only when it is active. 
 
We assume that processes have access to stable storage using which they are able to maintain 

their last saved state during time intervals when they are down. 

 
 
Termination Detection Algorithm 
 
Now that we know what it means for a computation to have terminated, we specify formally the 

properties of the termination detection problem: 
 
– Liveness: If the underlying computation satisfies the termination condition, then the 

termination detection algorithm must announce termination eventually. 
 
– Safety: If the termination detection algorithm announces termination, then the underlying 

computation has indeed terminated. 
 
– Non-Interference:The termination detection algorithm must not influence the underlying 

computation. To avoid confusion, we refer to messages sent by the underlying computation as 



106 

 

application messages and messages sent by the termination detection algorithm as control 

messages. 
 
 
Impossibility of Termination Detection and its Consequences. 
 
We assume that the processes have access to failure detector modules which observe the 

occurrence of failures in the system. Failure detectors are defined as general functions of the 

failure pattern, including functions that may provide information about future failures. Of course, 

such failure detectors cannot be implemented in the real world. Delporte-Gallet et al. introduced 

the notion of realistic failure detector. A failure detector is called realistic if it cannot guess the 

future behavior of the processes. In this work, we restrict ourselves to realistic failure detectors. 

To determine, if an execution is robust-restricted terminated it may be necessary to decide 

whether a currently down process is temporarily-down or forever-down. The two kinds of 

processes only differ in their future behavior. As a result, we postulate that no realistic failure 

detector can distinguish between a temporarily-down process and a forever-down process. 

 
 
Algorithm Ideas 
 
The main idea of our termination detection algorithm is that every process saves information 

about all messages it sends and receives. If the knowledge of all processes is combined, then the 

total set of messages in transit may be computed.Messages which are in transit towards a crashed 

process are assumed to be lost.If such a message is delivered anyhow, then the corresponding 

channel may have been incorrectly assumed to be empty as a result of which termination may 

have announced prematurely. The termination announcement is then revoked. Finally,the 

properties of the stabilizing crash-recovery model guarantee that eventually erroneous 

announcements of termination will end.The second idea is that every process is responsible for 

its own state and the state of all its incoming channels.  

 

If a process becomes passive and it believes all its incoming channels to be empty, then it 

proposes by using a broadcast primitive the announcement of termination. If a process has 

received such a termination announcement proposal from all live process, it announces 

termination. For the termination detection algorithm, we use a best-effort broadcast primitive 

.Informally, best-effort broadcast guarantees that a broadcast message is correctly delivered to all 

processes which are currently up and do not crash while executing the broadcast protocol. All 



107 

 

currently up processes agree on the delivered message. Of course, all messages are delivered 

only once and no message is created by the best-effort broadcast primitive.The whole system 

consists of (1) the underlying computation C which is observed with respect to termination, (2) 

the superimposed and crash-recovery tolerant termination detection algorithm A we develop 

now, and (3) a failure detector D of class ♦Pcr. If a passive process delivers a message, then it 

executes an becoming active event. We assume that all events that are executed satisfy the 

following: the corresponding instructions are executed within one time unit (atomically). 

 
 
 

VI.6 STABILIZING 

 

We use the notion of stabilization at two places: first, to restrict our problem to stabilizing 

termination detection, and second, to restrict the failure model to stabilizing crash-recovery 

model. Both assumptions are necessary as we now show: (1) Termination detector in the crash-

recovery model: Not solvable (Corollary8). (2) Termination detection in the stabilizing crash-

recovery model: when a process crashes, a realistic failure cannot distinguish between whether 

the crash is temporary or permanent.  

 

If it assumes that crash is temporary (but it actually is permanent), then termination is never 

announced and the liveness property is violated. On the other hand, if it assumes that crash is 

permanent (but it actually is temporary), termination is announced prematurely and the safety 

property is violated. (3) Stabilizing termination detection in the stabilizing crash-recovery model: 

we provide an algorithm in the next section. (4) Stabilizing termination detection in the crash-

recovery model: Assume a computation which never terminates because at least one active 

process crashes and recovers infinitely often. As a result, the termination detection algorithm will 

never cease announcing termination erroneously, because it expects the unstable process to 

“stabilize”—that is, to eventually cease crashing/recovering.  

 

Therefore, our approach to solve stabilizing termination detection in the stabilizing crash-

recovery model is a reasonable approach. In the next section we solve stabilizing termination 

detection in the stabilizing crash-recovery model using a failure detector from class ♦Pcr. The 

next theorem shows that this kind of failure detector is also necessary. Hence, the failure detector 



108 

 

♦Pcr is the weakest one for solving stabilizing termination detection in the stabilizing crash-

recovery model. 

 
VI.6.1 Solving Stabilizing Termination Detection. 

 
 
In this section, we develop an algorithm for solving the stabilizing termination detection problem 

in the stabilizing crash-recovery model. It turns out that since we are solving a weaker version of 

the termination detection problem in more restricted crash-recovery model, we can weaken some 

of the assumptions we made earlier. First, we assume that a process, on recovery, may start in 

active state only if it crashed in active state.  

 

This assumption may be weakened to: a process, on recovery, may start in active or passive state 

irrespective of the state in which it crashed. The actual state on recovery depends on the the 

application-specific recovery mechanism including the extent to which the application utilizes 

stable storage to log its state during execution. Second, we assume that channel does not 

duplicate any message. This assumption may be weakened to: a channel may duplicate a 

message finite number of times. With this weakened assumption, our channel can easily 

implemented on top of a fair-lossy channel using Retransmissions and acknowledgement.

 
 

 

VI.6.2 Self-Stabilization 
 
 
Self-stabilization is a different approach to fault tolerance it 

considers transient (temporary) failures 
 
it is more optimistic 

 
If bad thing happen (safety is violated), the system will recover within a finite time, and will behave 

nicely afterwards. 

 

 

VI.6.2.1 Definition 
 
 
A system is self-stabilizing when, regardless of its initial state, it is guaranteed to arrive at a legitimate 

state in a finite number of steps. 
 
System S is self-stabilizing with respect to predicate P that identifies the legitimate states, if: 



109 

 

 
Convergence 
 
Starting from any arbitrary configuration, S is guaranteed to reach a configuration satisfying P, within 

a finite number of state transitions. 
 
Closure 

 
P is closed under the execution of S. That is, once in a legitimate state, it will stay in a legitimate 

state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 


