
1

FACULTY OF SCIENCE AND TECHNOLOGY

 DEPARTMENT OF COMPUTERSCIENCE

LEVEL III

Advanced programming,CREDITS: 20, HOURS: 100

ACADEMIC YEAR 2018-2019

LECTURER: NSENGIYUMVA Jean Marie Vianney

Email : nsengiyumva@gmail.com

 MODULE OF Software Engineering and Project Planning

‘SEMESTER I’

2

3

.BRIEF DESCRIPTION OF AIMS AND CONTENTS

 Description of Aims

Module consists of three units #1. Software Engineering Concepts, #2. Software Project
Management

#1. This unit will provide the foundation of systems analysis and design by covering requirements
analysis for both commercial and technical applications. It will also introduce the data and
functional modeling techniques, which students can be expected to use.

#2. In this unit one has to learn the software processes life cycle models prototype, evolutionary
and spiral models. Here one has to go through software planning, Process management, Effort
Estimation and scheduling, risk management, organizational behaviour, and configuration
management.

 Learning Outcomes

Having successfully completed the module, students should be able to

1. Apply guidelines for the design of application software and user interfaces.

2. Apply the principles of program design (involving the design and development of a range

of objects) to the construction of a significant piece of software, justifying the design

decisions made at each stage and addressing the relevant quality issues.

3. Identify the basic techniques that result in efficient and effective ways of building large

software systems and be able to use those techniques in practice.

4. Apply the principles associated with the design and development to a range of web

applications.

5. Outline the theories that underpin the design and development of human-computer

interfaces.

6. Assess in a systematic fashion the quality of the interfaces in a range of software systems.

7. Discuss the properties of good software design.

8. Compare and contrast object-oriented analysis and design with structured analysis and

design.

4

9. Evaluate the quality of multiple software designs based on key design principles and

concepts.

10. Select and apply appropriate design patterns in the construction of a software

application.

11. Create and specify the software design for a medium-size software product using a

software requirement specification, an accepted program design methodology (e.g.,

structured or object-oriented), and appropriate design notation.

12. Conduct a software design review using appropriate guidelines.

13. Evaluate a software design at the component level.

14. Evaluate a software design from the perspective of reuse.

15. Explain the value of application programming interfaces (APIs) in software

development.

16. Use class browsers and related tools during the development of applications using APIs.

17. Design, implement, test, and debug programs that use large-scale API packages.

5

Contents

Chap1: Introduction Software Engineering ... 8

1.1. Software ... 9

CHAP 2: SOFTWARE PROCESSES .. 11

2.1 What is SDLC? .. 11

Why SDLC? .. 11

2.2 Software Process models/ SDLC models .. 15

2.3.2. Software design and implementation ... 32

. Software validation .. 33

2.3.4. Software evolution .. 34

Chapter 3. System design.. 35

3.1. System engineering .. 36

2.1.1. System requirements definition ... 37

2.1.2. System architecture design .. 37

2.1.3. Sub-system development ... 39

2.1.4. Systems integration ... 40

3.1.5. System evolution ... 40

5. Chapter 4. Agile methods .. 41

Chapter 5. Object-oriented development.. 46

5.1. Generalisation .. 50

5.2. Association .. 52

5.3. Object-oriented design process ... 53

5.3.1. System context and models of use ... 54

5.3.2. Architectural design .. 55

5.3.3. Object and class identification ... 55

5.3.4. Design models... 56

5.3.5. Object interface specification .. 57

Chapter 6. Unified Modelling Language... 58

6.1. Model, modelling ... 60

6.2. Diagrams in UML .. 61

6.3. Business models... 63

6

6.3.1. Business use case diagrams .. 65

6.3.2. Business analysis model .. 73

Chapter 7. Requirements analysis .. 77

7.1. Analyse the problem .. 80

7.1.1. Definition of glossary ... 81

7.1.2. Find actors .. 81

7.1.3. Develop requirements management plan .. 83

7.1.4. Develop Project Vision document .. 84

7.2. Understand stakeholder needs ... 84

7.2.1. Elicit stakeholder requests... 85

7.2.2. Find use cases ... 86

7.2.3. Manage dependencies .. 88

7.3. Define the system .. 89

7.4. Manage the scope of the system .. 90

7.5. Refine the system definition... 91

7.5.1. Details of use cases ... 92

7.5.2. Modelling and prototyping user-interface ... 93

7.6. Manage changing requirements ... 95

7.6.1. Structure the use case model .. 95

7.6.2. Review requirements .. 100

Analysis and design ... 101

8.1. Define a candidate architecture ... 104

8.1.1. Architectural analyzis .. 104

8.1.2. Use case analysis ... 109

 Refine the architecture ... 126

8.2.1. Identify design mechanisms .. 127

8.2.2. Identify design elements ... 128

8.3. Analyze behaviour.. 129

8.4. Design components.. 129

8.4.1. Use case design ... 131

8.4.2. Sub-system design ... 131

8.4.3. Class design ... 132

7

8.5. Implementation .. 141

8.6. Deployment ... 142

Chapter 9. Software testing .. 143

9.1. Unit testing .. 145

9.1.1. Interface testing .. 146

9.2. System testing ... 146

9.2.1. Integration testing ... 147

9.2.2. Functional testing .. 148

9.2.3. Performance testing .. 149

Chapter 10. Project management ... 150

10.1. Management activities ... 151

10.2. Project planning ... 152

10.2.1. The project plan .. 153

10.3. Project scheduling .. 154

10.4. Risk management... 155

10.4.1. Risk identification .. 156

8

ARE ENGINEERING AND PROJECT MANAGEMENT

Chap1: Introduction Software Engineering

Computer software has become a driving force in our life, everyone uses it either directly or

indirectly. The role of computer software has undergone significant change over the last 50

years. Software affects nearly every aspect of our lives and has become unavoidable part of

commerce, our culture and our everyday activities. It serves as the basis for modern scientific

investigation and engineering problem solving. It drives business decision making. It is

embedded in systems of all kinds: entertainment, office products, transportation, medical,

telecommunications, industrial processes, etc. Software as a product delivers the computing

potential embodied by computer hardware. It can be considered an information transformer

producing, managing, acquiring, modifying, displaying, or transmitting data. Software provides a

connection to worldwide information networks Internet and makes it possible to acquire

information in all of its forms.

As the importance of software grows, the software community continually attempts to develop

technologies that will make it easier, faster, and less expensive to build high-quality computer

programs. Some of these technologies are targeted at a specific application domain such as web-

site design; others focus on a technology domain (for example object-oriented systems); there are

technologies that deliver dependable software. However, we have yet to develop a software

technology that does it all. The technology encompasses a process, a set of methods, and an array

of tools that we call software engineering. Software engineering has been an engineering

discipline, it focuses on the cost effective development of high-quality software systems.

The notion of software engineering was first proposed in 1968 at a conference held to discuss

what was then called the software crisis. This software crisis resulted directly from the

introduction of new computer hardware based on integrated circuits. Dramatic improvements in

hardware performance, profound changes in computing architectures, increases in memory and

storage capacity, have all led to more complex computer-based systems. The resulting software

was orders of magnitude larger and more complex than previous software systems. Due to the

high demand for complex software systems the individual programmers of the earlier periods has

been replaced by a team of software developers, each focusing on one part of the technology

9

required to deliver a complex application. At large-scale systems developments, that requires

extensive co-operation of developers to complete developments within a prescribed duration of

time, it has become increasingly apparent that the existing development methods were not good

enough to efficiently drive the development processes.

Development projects were sometimes years late. The development cost was over the budget,

software was unreliable, difficult to maintain and performed poorly. Hardware costs were

consumedly decreased while software costs were rising rapidly. This phenomenon was

recognized by software developers and they stated that the software development practice was in

crisis. To solve problems it was necessary to recognize that software has become a product, and

similarly to other products a technology was required to develop it.

What does it means that software is a product? It is that:

1. Software has to provide services and functionalities as it specified.

2. Software has quality attributes.

3. There is a cost of its production.

4. There is a time limit for developing software.

New techniques and methods were needed to control the complexity inherent in large software

systems. These techniques have become part of software engineering and are now widely used.

Software industry has made tremendous progress since 1960s and the development of software

engineering has significantly improved the quality of software. The activities involved in

software development have been much better understood. Software engineers and development

organizations have developed effective methods of software specification, design and

implementation. However, the large number of different types of systems and organizations that

use these systems means that we need different approaches to software development.

1.1. Software

Computer software is the product that software engineers design and build. A software product is

composed of computer programs, data and documents. A definition of software can be given by

these items as follows:

10

1. Software consists of computer programs that when executed provide desired function and

performance.

2. It includes data structures that enable the programs to adequately manipulate information.

3. It has a documentation that describes the operation and use of the programs.

There are two fundamental types of software product:

1. Generic software. This software is produced by a development organization and sold on

the open market to any customer.

2. Customized software. This software is developed especially for a particular customer by

a software contractor.

The main difference between these two types of software is the following. In the case of generic

software products the organization that develops the software specifies the software

requirements. For custom products, the specification is usually developed and controlled by the

organization that is buying the software.

The breadth of software applications can be indicated by the following software areas: system

software, real-time software, business software, engineering and scientific software, embedded

software, personal computer software, web-based software and artificial intelligence software.

11

CHAP 2: SOFTWARE PROCESSES

A software development process, also known as a software development lifecycle, is a structure

imposed on the development of a software product.

2.1 What is SDLC?

The Software Development Lifecycle is a systematic process for building software that ensures

the quality and correctness of the software built. SDLC process aims to produce high-quality

software which meets customer expectations. The software development should be complete in

the pre-defined time frame and cost. SDLC consists of a detailed plan which explains how to

plan, build, and maintain specific software. Every phase of the SDLC lifecycle has its own

process and deliverables that feed into the next phase.

Why SDLC?

Here, are prime reasons why SDLC is important for developing a software system.

 It offers a basis for project planning, scheduling, and estimating

 Provides a framework for a standard set of activities and deliverables

 It is a mechanism for project tracking and control

 Increases visibility of project planning to all involved stakeholders of the development

process

 Increased and enhance development speed

 Improved client relations

 Helps you to decrease project risk and project management plan overhead

SDLC Phases

The entire SDLC process divided into the following stages:

12

 Phase 1: Requirement collection and analysis

 Phase 2: Feasibility study:

 Phase 3: Design:

 Phase 4: Coding:

 Phase 5: Testing:

 Phase 6: Installation/Deployment:

 Phase 7: Maintenance:

Phase 1: Requirement collection and analysis:

The requirement is the first stage in the SDLC process. It is conducted by the senior team

members with inputs from all the stakeholders and domain experts in the industry. Planning for

the quality assurance requirements and reorganization of the risks involved is also done at this

stage.

This stage gives a clearer picture of the scope of the entire project and the anticipated issues,

opportunities, and directives which triggered the project.

Requirements Gathering stage need teams to get detailed and precise requirements. This helps

companies to finalize the necessary timeline to finish the work of that system.

Phase 2: Feasibility study:

Once the requirement analysis phase is completed the next step is to define and document

software needs. This process conducted with the help of 'Software Requirement Specification'

document also known as 'SRS' document. It includes everything which should be designed and

developed during the project life cycle.

There are mainly five types of feasibilities:

 Economic: Can we complete the project within the budget or not?

 Legal: Can we handle this project as cyber law and other regulatory

framework/compliances?

 Operation feasibility: Can we create operations which are expected by the client?

13

 Technical: Need to check whether the current computer system can support the software

 Schedule: Decide that the project can be completed within the given schedule or not.

Phase 3: Design:

In this third phase, the system and software design documents are prepared as per the

requirement specification document. This helps define overall system architecture.

This design phase serves as input for the next phase of the model.

There are two kinds of design documents developed in this phase:

High-Level Design (HLD)

 Brief description and name of each module

 An outline about the functionality of every module

 Interface relationship and dependencies between modules

 Database tables identified along with their key elements

 Complete architecture diagrams along with technology details

Low-Level Design (LLD)

 Functional logic of the modules

 Database tables, which include type and size

 Complete detail of the interface

 Addresses all types of dependency issues

 Listing of error messages

 Complete input and outputs for every module

Phase 4: Coding:

Once the system design phase is over, the next phase is coding. In this phase, developers start

building the entire system by writing code using the chosen programming language. In the

14

coding phase, tasks are divided into units or modules and assigned to the various developers. It is

the longest phase of the Software Development Life Cycle process.

In this phase, Developer needs to follow certain predefined coding guidelines. They also need to

use programming tools like compiler, interpreters, debugger to generate and implement the code.

Phase 5: Testing:

Once the software is complete, and it is deployed in the testing environment. The testing team

starts testing the functionality of the entire system. This is done to verify that the entire

application works according to the customer requirement.

During this phase, QA and testing team may find some bugs/defects which they communicate to

developers. The development team fixes the bug and send back to QA for a re-test. This process

continues until the software is bug-free, stable, and working according to the business needs of

that system.

Phase 6: Installation/Deployment:

Once the software testing phase is over and no bugs or errors left in the system then the final

deployment process starts. Based on the feedback given by the project manager, the final

software is released and checked for deployment issues if any.

Phase 7: Maintenance:

Once the system is deployed, and customers start using the developed system, following 3

activities occur

 Bug fixing - bugs are reported because of some scenarios which are not tested at all

 Upgrade - Upgrading the application to the newer versions of the Software

 Enhancement - Adding some new features into the existing software

The main focus of this SDLC phase is to ensure that needs continue to be met and that the

system continues to perform as per the specification mentioned in the first phase.

15

 2.2 Software Process models/ SDLC models

A software process model is an abstract representation of a software process. In this section a

number of general process models are introduced and they are presented from an architectural

viewpoint. These models can be used to explain different approaches to software development.

They can be considered as process frameworks that may be extended and adapted to create more

specific software engineering processes. In this chapter the following process models will be

introduced:

Waterfall model

The waterfall is a widely accepted SDLC model. In this approach, the whole process of the

software development is divided into various phases. In this SDLC model, the outcome of one

phase acts as the input for the next phase.

This SDLC model is documentation-intensive, with earlier phases documenting what need be

performed in the subsequent phases.

Incremental Approach

The incremental model is not a separate model. It is essentially a series of waterfall cycles. The

requirements are divided into groups at the start of the project. For each group, the SDLC model

is followed to develop software. The SDLC process is repeated, with each release adding more

functionality until all requirements are met. In this method, every cycle act as the maintenance

phase for the previous software release. Modification to the incremental model allows

development cycles to overlap. After that subsequent cycle may begin before the previous cycle

is complete.

V-Model

In this type of SDLC model testing and the development, the phase is planned in parallel. So,

there are verification phases on the side and the validation phase on the other side. V-Model

joins by Coding phase.

16

Agile Model

Agile methodology is a practice which promotes continue interaction of development and testing

during the SDLC process of any project. In the Agile method, the entire project is divided into

small incremental builds. All of these builds are provided in iterations, and each iteration lasts

from one to three weeks.

Spiral Model

The spiral model is a risk-driven process model. This SDLC model helps the team to adopt

elements of one or more process models like a waterfall, incremental, waterfall, etc.

This model adopts the best features of the prototyping model and the waterfall model. The spiral

methodology is a combination of rapid prototyping and concurrency in design and development

activities.

Big bang model

Big bang model is focusing on all types of resources in software development and coding, with

no or very little planning. The requirements are understood and implemented when they come.

This model works best for small projects with smaller size development team which are working

together. It is also useful for academic software development projects. It is an ideal model where

requirements are either unknown or final release date is not given.

Conclusion

The SDLC is a systematic process for building software that ensures the quality and

correctness of the software built

SDLC process provides a framework for a standard set of activities and deliverables

Seven different SDLC stages are :

1) Requirement collection and analysis

17

2) Feasibility study:

3) Design 4) Coding

5) Testing: 6) Installation/Deployment and

7) Maintenance

The senior team members conduct the requirement analysis phase

Feasibility Study stage includes everything which should be designed and developed during

the project life cycle. In the Design phase, the system and software design documents are

prepared as per the requirement specification document.

In the coding phase, developers start build the entire system by writing code using the chosen

programming language

Testing is the next phase which is conducted to verify that the entire application works

according to the customer requirement.

Installation and deployment face begins when the software testing phase is over, and no bugs

or errors left in the system. Bug fixing, upgrade, and engagement actions covered in the

maintenance face. Waterfall, Incremental, Agile, V model, Spiral, Big Bang are some of the

popular SDLC models. SDLC consists of a detailed plan which explains how to plan, build,

and maintain specific software.

What is Waterfall Model in SDLC? Advantages & Disadvantages

What is Waterfall Model?

Waterfall Model is a sequential model that divides software development into different phases.

Each phase is designed for performing specific activity during SDLC phase. It was introduced in

1970 by Winston Royce.

18

19

Different Phases of Waterfall Model in Software Engineering

Different

phases

 Activities performed in each stage

Requirement

Gathering

stage

 During this phase, detailed requirements of the software system

to be developed are gathered from client

Design Stage  Plan the programming language, for Example Java, PHP, .net

 Database like Oracle, MySQL, etc.

 Other high-level technical details of the project

Built Stage  After design stage, it is built stage, that is nothing but coding the

software

Test Stage  In this phase, you test the software to verify that it is built as per

the specifications given by the client.

Deployment

stage

 Deploy the application in the respective environment

Maintenance

stage

 Once your system is ready to use, you may later require change

the code as per customer request

When to use SDLC Waterfall Model

 Requirements are not changing frequently

 Application is not complicated and big

 Project is short

 Requirement is clear

 Environment is stable

 Technology and tools used are not dynamic and is stable

 Resources are available and trained

20

 Advantages and Disadvantages of Waterfall-Model

 Advantages Dis-Advantages

Before the next phase of

development, each phase must

be completed

Error can be fixed only during the phase

 Suited for smaller projects

where requirements are well

defined

 It is not desirable for complex project where

requirement changes frequently

 They should perform quality

assurance test (Verification and

Validation) before completing

each stage

 Testing period comes quite late in the

developmental process

 Elaborate documentation is

done at every phase of the

software's development cycle

 Documentation occupies a lot of time of

developers and testers

 Project is completely

dependent on project team with

minimum client intervention

 Clients valuable feedback cannot be included

with ongoing development phase

 Any changes in software is

made during the process of the

development

Small changes or errors that arise in the

completed software may cause a lot of problems

21

What is Incremental Model?

Incremental Model is a process of software development where requirements are broken down

into multiple standalone modules of software development cycle. Incremental development is

done in steps from analysis design, implementation, testing/verification, maintenance.

Each iteration passes through the requirements, design, coding and testing phases. And each

subsequent release of the system adds function to the previous release until all designed

functionality has been implemented.

The system is put into production when the first increment is delivered. The first increment is

often a core product where the basic requirements are addressed, and supplementary features are

added in the next increments. Once the core product is analyzed by the client, there is plan

development for the next increment.

22

Characteristics of an Incremental module includes

 System development is broken down into many mini development projects

 Partial systems are successively built to produce a final total system

 Highest priority requirement is tackled first

 Once the incremented portion id developed, requirements for that increment are frozen

Incremental Phases Activities performed in incremental phases

Requirement Analysis  Requirement and specification of the software

are collected

Design  Some high-end function are designed during

this stage

Code  Coding of software is done during this stage

Test  Once the system is deployed, it goes through the

testing phase

Incremental Phases Activities performed in incremental phases

Requirement Analysis  Requirement and specification of the software

are collected

When to use Incremental models?

 Requirements of the system are clearly understood

 When demand for an early release of a product arises

 When software engineering team are not very well skilled or trained

 When high-risk features and goals are involved

 Such methodology is more in use for web application and product based companies

23

Advantages and Disadvantages of Incremental Model

What is Spiral Model? When to Use? Advantages & Disadvantages

What is Spiral Model?

Spiral Model is a combination of a waterfall model and iterative model. Each phase in spiral

model begins with a design goal and ends with the client reviewing the progress. The spiral

model was first mentioned by Barry Boehm in his 1986 paper.

The development team in Spiral-SDLC model starts with a small set of requirement and goes

through each development phase for those set of requirements. The software engineering team

adds functionality for the additional requirement in every-increasing spirals until the application

is ready for the production phase.

Advantages Disadvantages

 The software will be generated

quickly during the software life

cycle

 It requires a good planning designing

 It is flexible and less expensive

to change requirements and

scope

 Problems might cause due to system

architecture as such not all requirements

collected up front for the entire software

lifecycle.

 Thought the development

stages changes can be done

 Each iteration phase is rigid and does not

overlap each other

 This model is less costly

compared to others

 A customer can respond to

each building

 Rectifying a problem in one unit requires

correction in all the units and consumes a lot of

time

24

Spiral Model Phases

Spiral Model Phases Activities performed during phase

25

Planning  It includes estimating the cost, schedule and

resources for the iteration. It also involves

understanding the system requirements for

continuous communication between the system

analyst and the customer

Risk Analysis  Identification of potential risk is done while risk

mitigation strategy is planned and finalized

Engineering  It includes testing, coding and deploying

software at the customer site

Evaluation  Evaluation of software by the customer. Also,

includes identifying and monitoring risks such

as schedule slippage and cost overrun

When to use Spiral Methodology?

 When project is large

 When releases are required to be frequent

 When creation of a prototype is applicable

 When risk and costs evaluation is important

 For medium to high-risk projects

 When requirements are unclear and complex

 When changes may require at any time

 When long term project commitment is not feasible due to changes in economic priorities

Advantages and Disadvantages of Spiral Model

Advantages Disadvantages

 Additional functionality or

changes can be done at a later

stage

 Risk of not meeting the schedule or budget

26

 Cost estimation becomes easy

as the prototype building is

done in small fragments

 It works best for large projects only also

demands risk assessment expertise

 Continuous or repeated

development helps in risk

management

 For its smooth operation spiral model protocol

needs to be followed strictly

 Development is fast and

features are added in a

systematic way

 Documentation is more as it has intermediate

phases

What is RAD Model? Advantages & Disadvantages

What is RAD (Rapid Application Development) Model?

RAD or Rapid Application Development process is an adoption of the waterfall model; it targets

at developing software in a short span of time. RAD follow the iterative

SDLC RAD model has following phases

 Business Modeling

 Data Modeling

 Process Modeling

 Application Generation

 Testing and Turnover

27

It focuses on input-output source and destination of the information. It emphasizes on delivering

projects in small pieces; the larger projects are divided into a series of smaller projects. The main

features of RAD model are that it focuses on the reuse of templates, tools, processes, and code.

28

Different phases of RAD model includes

Phases of RAD model Activities performed in RAD Model

Business Modeling  On basis of the flow of information and

distribution between various business channels,

the product is designed

Data Modeling  The information collected from business

modeling is refined into a set of data objects

that are significant for the business

Process Modeling  The data object that is declared in the data

modeling phase is transformed to achieve the

information flow necessary to implement a

business function

Application Generation  Automated tools are used for the construction of

the software, to convert process and data

models into prototypes

Testing and Turnover  As prototypes are individually tested during

every iteration, the overall testing time is

reduced in RAD.

When to use RAD Methodology?

 When a system needs to be produced in a short span of time (2-3 months)

 When the requirements are known

 When the user will be involved all through the life cycle

 When technical risk is less

 When there is a necessity to create a system that can be modularized in 2-3 months of

time

 When a budget is high enough to afford designers for modeling along with the cost of

automated tools for code generation

29

Advantages and Disadvantages of SDLC RAD Model

Advantages Disadvantages

 Flexible and adaptable to

changes

 It can't be used for smaller projects

 It is useful when you have to

reduce the overall project risk

 Not all application is compatible with RAD

 It is adaptable and flexible to

changes

 When technical risk is high, it is not suitable

 It is easier to transfer

deliverables as scripts, high-

level abstractions and

intermediate codes are used

 If developers are not committed to delivering

software on time, RAD projects can fail

 Due to code generators and

code reuse, there is a reduction

of manual coding

 Reduced features due to time boxing, where

features are pushed to a later version to finish a

release in short period

Waterfall vs. Incremental vs. Spiral vs. Rad Model: Key Difference

To manage the level of complexity during the software development cycle, various SDLC model

is implemented by the software companies. Their aim is to deliver a quality software product,

however each model is unique in terms of their software development approach. To effectively

learn the SDLC models we will compare the various models of Software Engineering. Here we

will see how each model differs from other in terms of cost, time duration, requirements,

maintenance etc.

V-model of software process

The V-model represents a software process model that may be considered an extension of the

waterfall model. Instead of moving down in a linear way, the process steps are bent upwards

after the implementation phase, to form the typical V shape. The V-model demonstrates the

relationships between each phase of the development life cycle and its associated phase of

30

testing. The horizontal and vertical axes represent time and level of abstraction respectively.

Similarly to waterfall model the process steps follow each other in a sequential order but V-

model allows the parallel execution of activities.

In the requirements definition phase the requirements of the system are collected by analyzing

the needs of the user, and in parallel the user acceptance or functional test cases are also

designed. At the level of architectural design the software architecture, its components with their

interface are designed at high-level to provide functional requirements of software. The design of

integration testing is also carried out in this phase. In the component design phase the units and

modules are designed at low-level. The low level design document or program specifications will

contain a detailed functional logic of the units and modules. The unit test cases are also

developed in this phase. After the implementation phase the development process continues

upward by unit, integration and system testing.

Figure 3.2. Representation of V-model.

Evolutionary development

Evolutionary development is based on the idea of developing an initial implementation, exposing

this to user comment and refining it through many versions until an adequate system has been

developed (Figure 3.3). Specification, development and validation activities are interleaved with

rapid feedback across activities.

31

Figure Evolutionary development.

There are two fundamental types of evolutionary development:

1. Exploratory development. The objective of the process is to work with the customer in

order to explore their requirements and deliver a final system. The development starts

with the parts of the system that are well understood. The system evolves by adding new

features proposed by the customer.

2. Throwaway prototyping. In this case the objective of the evolutionary development

process is to understand the customer’s unclear requirements, namely to validate and

derive the requirements definition for the system. The prototype concentrates on

experimenting with the customer requirements that are poorly understood.

An evolutionary approach to software development is often more effective than the waterfall

approaches in producing systems that meet the immediate needs of customers. The advantage of

a software process that is based on an evolutionary approach is that the specification can be

developed incrementally. As users develop a better understanding of their problem, this can be

reflected in the software system. However the evolutionary approach has also problems. Regular

deliverables are need for monitoring progress. If systems are developed quickly, it is not cost-

32

effective to produce documents that reflect every version of the system. Continual change tends

to corrupt the software structure.

Software specification

A software requirement is defined as a condition to which a system must comply. Software

specification or requirements management is the process of understanding and defining what

functional and non-functional requirements are required for the system and identifying the

constraints on the system’s operation and development. The requirements engineering process

results in the production of a software requirements document that is the specification for the

system.

There are four main phases in the requirements engineering process:

1. Feasibility study. In this study an estimate is made of whether the identified user needs

may be satisfied using current software and hardware technologies. The study considers

whether the proposed system will be cost-effective from a business point of view and

whether it can be developed within existing budgetary constraints.

2. Requirements elicitation and analysis. This is the process of deriving the system

requirements through observation of existing systems, discussions with potential users,

requirements workshop, storyboarding, etc.

3. Requirements specification. This is the activity of translating the information gathered

during the analysis activity into a document that defines a set of requirements. Two types

of requirements may be included in this document: user (functional) requirements and

system (non-functional) requirements.

4. Requirements validation. It is determined whether the requirements defined are complete.

This activity also checks the requirements for consistency.

2.3.2. Software design and implementation

The implementation phase of software development is the process of converting a system

specification into an executable system through the design of system. A software design is a

description of the architecture of the software to be implemented, the data which is part of the

33

system, the interfaces between system components and, sometimes, the algorithms used. The

design process activities are the followings:

1. Architectural design. The sub-systems of system and their relationships are identified

based on the main functional requirements of software.

2. Abstract specification. For each sub-system, an abstract specification of its services and

the constraints under which it must operate is defined.

3. Interface design. Interfaces allow the sub-system’ services to be used by other sub-

systems. The representation of interface should be hidden. In this activity the interface is

designed and documented for each sub-system. The specification of interface must be

unambiguous.

4. Component design. Services are allocated to components and the interfaces of these

components are designed.

5. Data structure design. The data structures used in the system implementation are

designed in detail and specified.

6. Algorithm design. In this activity the algorithms used to provide services are designed in

detail and specified.

This general model of the design process may be adapted in different ways in the practical uses.

A contrasting approach can be used by structured methods for design objectives. A structured

method includes a design process model, notations to represent the design, report formats, rules

and design guidelines. Most these methods represent the system by graphical models and many

cases can automatically generate program code from these models. Various competing methods

to support object-oriented design were proposed in the 1990s and these were unified to create the

Unified Modeling Language (UML) and the associated unified design process.

. Software validation

Software validation or, more generally, verification and validation (V & V) is intended to show

that a system conforms to its specification and that the system meets the expectations of the

customer buying the system. It involves checking the processes at each stage of the software

34

process. The majority of validation costs are incurred after implementation when the operation of

system is tested.

The software is tested in the usual three-stage testing process. The system components, the

integrated system and finally the entire system are tested. Component defects are generally

discovered early in the process and the interface problems during the system integration. The

stages in the testing process are:

1. Component (or unit) testing. Individual components are tested to ensure that they operate

correctly. Each component is tested independently, without other system components.

2. System testing. The components are integrated to make up the system. This testing

process is concerned with finding errors that result from interactions between

components and component interface problems. It is also concerned with validating that

the system meets its functional and non-functional requirements.

3. Acceptance testing. It is considered a functional testing of system. The system is tested

with data supplied by the system customer.

Usually, component development and testing are interleaved. Programmers make up their own

test data and test the code as it is developed. However in many process model, such as in V-

model, Test Driven Development, Extreme Programming, etc., the design of the test cases starts

before the implementation phase of development. If an incremental approach to development is

used, each increment should be tested as it is developed, with these tests based on the

requirements for that increment.

2.3.4. Software evolution

Software evolution, specifically software maintenance, is the term used in software engineering

to refer to the process of developing software initially, then repeatedly updating it for various

reasons.

The aim of software evolution would be to implement the possible major changes to the system.

The existing larger system is never complete and continues to evolve. As it evolves, the

complexity of the system will grow. The main objectives of software evolution are ensuring the

35

reliability and flexibility of the system. The costs of maintenance are often several times the

initial development costs of software.

Chapter 3. System design

The term system is one that is universally used. A system is a purposeful set of interrelated

components that form an integrated whole and work together to achieve some objective. Systems

are usually hierarchical and so include other systems. These other systems are called sub-

systems. Some systems share common characteristics, including

1. A system has structure, it contains parts or components that are directly or indirectly

related to each other.

2. A system has behaviour, it contains processes that transform inputs into outputs.

3. A system has interconnectivity, the parts and processes are connected by structural and/or

behavioural relationships.

4. Structure and behaviour of a system may be decomposed via sub-systems and sub-

processes to elementary parts and process steps.

36

The technical computer-based systems are systems that include hardware and software

components. Socio-technical systems include one or more technical systems but also include

knowledge of how the system should be used to achieve some broader objective. This means that

these systems have defined operational processes, include people who operate the system, are

governed by organizational policies and rules and may be affected by external constraints such as

national laws and regulatory policies.

Software engineering is critical for the successful development of complex, computer based

socio-technical systems. Software engineer should not simply be concerned with the software

itself but they should also have a broader awareness of how that software interacts with other

hardware and software systems and how it is supposed to be used by end users.

The complexity of relationships between the components in a system means that the system is

more than simply the sum of its parts. It has properties that are properties of the system as a

whole. There are two types of emergent properties of system:

1. Functional properties. These properties appear when all the parts of a system work

together to achieve some objective. For example, when an alarm system turns on the siren

it is due to the co-operation between its components.

2. Non-functional properties. These properties are related to the behavior of the system in its

operational environment. Examples of non-functional properties are reliability,

performance, safety and security for computer-based systems.

3.1. System engineering

Systems engineering focuses on how to design and manage complex engineering projects over

their life cycles. It includes the activity of specifying, designing, implementing, validating,

deploying and maintaining socio-technical systems. Systems engineers are not just concerned

with software but also with hardware and the interactions of a system with users and its

environment. Important aspects of system development that should be addressed the services that

the system provides, the constraints under which the system must be built and operated and the

way in which the system is used to fulfil its purpose. The stages of the systems engineering

process are the following:

37

1. System requirements definition

2. System architecture design

3. Sub-system development

4. System integration

5. System evolution

2.1.1. System requirements definition

System requirement definitions specify what the system should do, its functionality and its

essential and desirable system properties. The techniques applied to elicit and collect information

in order to create system specifications and requirement definitions involve consultations,

interviews, requirements workshop with customers and end users. The objective of the

requirements definition phase is to derive the two types of requirement:

1. Functional requirements. They define the basic functions that the system must provide

and focus on the needs and goals of the end users.

2. System requirements (non-functional requirements). These are non-functional system

properties such as availability, performance and safety etc. They define functions of a

system, services and operational constraints in detail.

2.1.2. System architecture design

System architecture design is concerned with how the system functionality is to be provided by

the components of the system. The activities involved in this process are:

1. Partition of requirements. After analysing the system requirements they are organized

into related groups using several partitioning options.

2. Identification of sub-systems. The objective of this activity is to identify the sub-systems

that can individually or collectively meet the system requirements. The relationships

between sub-systems should be also identified at this time.

3. Assignment of requirements to sub-systems. In this activity the requirements are assigned

to the identified sub-systems. If the sub-system identification is based on the results of

requirements partitioning it provides an unambiguous assignment.

38

4. Specification of sub-system functionality. It is the specification of functionality provided

by each sub-system. There shall be no overlapping or similar functions, the architecture

shall be followed.

5. Definition of sub-system interfaces. Interfaces provide the communication between the

sub-systems. Once the interfaces have been defined it becomes possible to develop sub-

systems in parallel.

There may be a lot of feedback and iteration from one stage to another in this design process. As

problems, questions, new requirements arise the revision of earlier stages may be required. The

processes of requirements engineering and design in practice closely linked. Constraints

determined by existing systems may limit design choices, and these choices may be specified in

the requirements. During the design process problems with existing requirements may arise and

new requirements may emerge. These have effect on design decisions again and vice versa.

Therefore the linked processes can be represented by a spiral, as shown in Figure 2.1.

Figure 2.1. Spiral model of requirements and design.

39

Starting in the centre, each round of the spiral may add more detail to the requirements and the

design. Some rounds may focus on requirements, some on design.

During the phase of requirements and design, systems may be modelled as a set of components

and relationships between these components. These are usually illustrated graphically in a

system architecture model that gives an overview of the system architecture. The system

architecture may be simpler presented as a block diagram showing the major sub-systems and the

interconnections between these sub-systems. The relationships indicated may include data flow

or some other type of dependency relationship. For an example, Figure 2.2. shows the

decomposition of an alarm system into its principal components.

Figure 2.2. Block diagram of a simple alarm system.

2.1.3. Sub-system development

During sub-system development, the sub-systems identified are implemented. This may involve

starting another system engineering process for individual sub-systems or, if the sub-system is

software, a software process involving requirements, design, implement and testing.

Usually all sub-systems of the system are designed and developed during the development

process. However, some of the sub-systems may be bought as commercial system for the reason

of integration into the system. Sometime it is cheaper to buy existing products than to develop

specific components. However, commercial systems may not meet all the requirements exactly.

In these cases, it is necessary to change the requirements and repeat the design phase of

development to correctly accommodate the purchased component. Another possibility is to

request or make changes on the purchased component.

40

2.1.4. Systems integration

During the system integration process, the independently developed subsystems are put together

to make up a complete system. Integration can be done using such an approach, where all the

sub-systems are integrated at the same time. However, for technical and managerial purposes, an

incremental integration process where sub-systems are integrated one at a time looks a better

approach, for two reasons:

1. It is usually impossible to schedule the development of all the sub-systems so that they

are all finished at the same time.

2. Incremental integration reduces the cost of error location. If many sub-systems are

simultaneously integrated, an error that arises during testing may be in any of these sub-

systems. When a single sub-system is integrated with an already working system, errors

that occur are probably in the newly integrated sub-system or in the interactions between

the existing sub-systems and the new sub-system.

3. The resources can be shared, their usage can be scheduled on a better way. The costs may

be optimized. For example the team which is responsible to test the sub-systems, can

consist less engineers and the can test the sub-systems one after another, or the usage of

an expensive machine can be shared, etc.

Once the components have been integrated, an extensive system testing takes place. This testing

should be aimed at testing the interfaces between components and the behaviour of the system as

a whole.

3.1.5. System evolution

Large and complex systems may have a very long lifetime. During their life, they are changed to

correct errors in the original system requirements and to implement new requirements that have

emerged. Other reasons for changes: the computers in the system are likely to be replaced with

new high-performance machines, the organization that uses the system may reorganize itself and

hence use the system in a different way, the external environment of the system may change,

forcing changes to the system, etc.

41

System evolution is inherently costly for several reasons:

1. Proposed changes have to be analyzed very carefully from a business and a technical

viewpoint. Changes have to contribute to the goals of the system and should not simply

be technically motivated.

2. Because sub-systems are never completely independent, changes to one subsystem may

affect the performance or behaviour of other sub-systems. Consequent changes to these

sub-systems may therefore be needed.

3. The reasons for original design decisions are often unrecorded. Those responsible for the

system evolution have to work out why particular design decisions were made.

4. As systems age, their structure typically becomes corrupted by change so the costs of

making further changes increases.

5. Chapter 4. Agile methods

Nowadays, most organizations and companies have to work under rapidly changing

conditions. Software is used in almost all business so it is essential that new software is

developed quickly. Rapid software development is therefore one of the most critical

requirement for software systems

6. The conventional software development processes that are based on completely

specifying the requirements then designing, building and testing the system are not

applicable to rapid software development. As the requirements change the system design

or implementation has to be reworked and retested. As a consequence, the development

process is usually late and the final software is delivered to the customer long after it was

originally specified. In some cases the original reason for developing software may have

changed so radically that the software becomes effectively useless when it is delivered.

Therefore, development processes, especially in the case of business systems, have to

focus on rapid software development and delivery.

7. In the 1980s and early 1990s, it was considered that the best way to achieve better

software quality was provided by rigorously planned and controlled conventional

software development processes that were normally used for development of large-scale

systems. These development processes usually involve a significant overhead in

42

planning, designing and documenting the system. However, when this plan-based

development approach was applied to small and medium-sized business systems, the

overhead involved was so large that it sometimes dominated the software development

process. Software engineers often spent more time on how the system should be

developed, than on program development and testing.

8. Dissatisfaction with these approaches led a number of software developers in the 1990s

to propose new agile methods. These allowed the development team to focus on the

software itself rather than on its design and documentation. Agile methods universally

rely on an iterative approach to software specification, development and delivery, and

were designed primarily to support business application development where the system

requirements usually changed rapidly during the development process. They are intended

to deliver working software quickly to customers, who can then propose new and

changed requirements to be included in later iterations of the system.

In February 2001, 17 software developers met at the Snowbird, Utah resort, to discuss

lightweight development methods. They published the Manifesto for Agile Software

Development to define the approach now known as agile software development. The Agile

Manifesto reads, in its entirety, as follows:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

1. Individuals and interactions over Processes and tools

2. Working software over Comprehensive documentation

3. Customer collaboration over Contract negotiation

4. Responding to change over Following a plan

That is, while there is value in the items on the right, we value the items on the left more. The

meanings of the manifesto items on the left within the agile software development context are:

1. Individuals and interactions. In agile development, self-organization and motivation are

important, as are interactions like co-location and pair programming.

43

2. Working software. Working software will be more useful and welcome than just

presenting documents to clients in meetings.

3. Customer collaboration. Requirements cannot be fully collected at the beginning of the

software development cycle, therefore continuous customer or stakeholder involvement is

very important.

4. Responding to change. Agile development is focused on quick responses to change and

continuous development.

The Agile Manifesto is based on twelve principles:

1. Customer satisfaction by rapid delivery of useful software.

2. Welcome changing requirements, even late in development.

3. Working software is delivered frequently (weeks rather than months).

4. Working software is the principal measure of progress.

5. Sustainable development, able to maintain a constant pace.

6. Close, daily cooperation between business people and developers.

7. Face-to-face conversation is the best form of communication (co-location).

8. Projects are built around motivated individuals, who should be trusted.

9. Continuous attention to technical excellence and good design.

10. Simplicity, the art of maximizing the amount of work not done, is essential.

11. Self-organizing teams.

12. Regular adaptation to changing circumstances.

Agile software development processes are designed to produce useful software quickly.

Generally, they are iterative processes where specification, design, development and testing are

interleaved. The software is not developed and deployed in its entirety but in a series of

increments, with each increment including new system functionality. Although there are many

approaches to rapid software development, they share some fundamental characteristics:

1. The processes of specification, design and implementation are concurrent. There is no

detailed system specification, and design documentation is minimised or generated

44

automatically by the programming environment used to implement the system. The user

requirements document defines only the most important characteristics of the system.

2. The system is developed in a series of increments. End-users and other system

stakeholders are involved in specifying and evaluating each increment. They may

propose changes to the software and new requirements that should be implemented in a

later increment of the system.

3. System user interfaces are often developed using an interactive development system that

allows the interface design to be quickly created by drawing and placing icons on the

interface.

Incremental development involves producing and delivering the software in increments rather

than in a single package (Figure 4.2.). Each process iteration produces a new software increment.

The two main advantages to adopting an incremental approach to software development are:

1. Accelerated delivery of customer services. Early increments of the system can deliver

high-priority functionality so that customers can get value from the system early in its

development. Customers can see their requirements in practice and specify changes to be

incorporated in later releases of the system.

2. User engagement with the system. Users of the system have to be involved in the

incremental development process because they have to provide feedback to the

development team on delivered increments.

Figure 4.2. Incremental development process.

45

However, there can be real difficulties with incremental development, particularly in large

companies with fairly rigid procedures and in organisations where software development is

usually outsourced to an external contractor. The major difficulties with iterative development

and incremental delivery are:

1. Management problems. Software processes that are generally applied for large system

development regularly generate documents that can be used to assess the progress of

development. However, in an iterative development process a lots of system

documentation is produced that is not cost effective. Furthermore, managers may have

difficulties relating to the applied technologies and skill of staff.

2. Contractual problems. The contract between a customer and a software developer is

normally based on the system specification. In the case of iterative development the

complete specification is only available at the end of development, so it may be difficult

to design a contract for the system development.

3. Validation problems. An independent V & V team can start work as soon as the

specification is available and can prepare tests in parallel with the system

implementation. However, iterative development processes interleave specification and

development. Hence, independent validation of incrementally developed systems is

difficult.

4. Maintenance problems. Continual change may corrupt the structure of any software

system and makes it difficult to understand. This problem can be reduced by continual

refactoring program codes.

Of course, there are some types of systems where incremental development and delivery is not

the best approach. These are very large systems where development may involve teams working

in different locations, some embedded systems where the software depends on hardware

development and some critical systems where all the requirements must be analysed to check for

interactions that may compromise the safety or security of the system.

Probably the best-known agile method is extreme programming. Other agile approaches include

Scrum, Crystal, Adaptive Software Development, DSDM and Feature Driven Development.

Although these agile methods are all based around the notion of incremental development and

46

delivery, they propose different processes to achieve this. However, they share a set of principles

and therefore have much in common. In this chapter the Extreme Programming, Scrum and

Feature Driven Development are overviewed.

Chapter 5. Object-oriented development

The terms object and object-oriented are applied to different types of entity, design methods,

systems and programming languages. An object-oriented system is made up of interacting

objects that maintain their own local state and provide operations on that state. There is a general

acceptance that an object is an encapsulation of information. The representation of the state is

private and cannot be accessed directly from outside the object

An object is an entity that has a state and a defined set of operations that operate on that state.

The state is represented as a set of object attributes. The operations associated with the object

provide services to other objects that request these services when some computation is required.

Objects communicate by exchanging the information required for service provision. The copies

of information needed to execute the service and the results of service execution are passed as

parameters.

Objects are created according to an object class definition. An object class definition is both a

type specification and a template for creating objects. It includes declarations of all the attributes

and operations that should be associated with an object of that class.

Object-oriented design processes involve designing object classes and the relationships between

these classes. These classes define the objects in the system and their interactions. When the

design is realised as an executing program, the objects are created dynamically from these class

definitions.

Object-oriented design is part of object-oriented development where an object-oriented strategy

is used throughout the development process:

47

1. Object-oriented analysis. It is concerned with developing an object-oriented model of the

application domain. The objects in that model reflect the entities and operations

associated with the problem to be solved.

2. Object-oriented design. It is concerned with developing an object-oriented model of a

software system to implement the identified requirements.

3. Object-oriented programming. It is concerned with implementing a software design using

an object-oriented programming language, such as Java.

The transition between these stages of development should, ideally, be seamless, with

compatible notations used at each stage. Moving to the next stage involves refining the previous

stage by adding detail to existing object classes and devising new classes to provide additional

functionality.

The object-oriented systems might have some advantages in comparison to systems, which have

been developed with other methods, for example realizing changes with an object-oriented

system can be easier because the objects are independent. They may be understood and modified

as standalone entities. Changing the implementation of an object or adding services should not

affect other system objects.

Objects are, potentially, reusable components because they are independent encapsulations of

state and operations. Designs can be developed using objects that have been created in previous

designs. This reduces design, programming and validation costs. It may also lead to the use of

standard objects and reduce the risks involved in software development.

In 1990s several object-oriented design methods have been proposed and the Unified Modelling

Language (UML) became a unification of the notations used in these methods. In year 2000 the

UML was accepted by the International Organization for Standardization (ISO) as a standard for

modelling software-intensive systems .

In the UML, an object class is represented as a named rectangle with two sections. The object

attributes are listed in the top section. The operations that are associated with the object are set

out in the bottom section. Figure 5.1. illustrates this notation using an object class that models an

48

employee in an organisation. The UML uses the term operation to mean the specification of an

action; the term method is used to refer to the implementation of an operation.

Figure 5.1. Representation of class Employee.

The class Employee defines a number of attributes that hold information about employees

including their name and address, social security number, tax code, and so on. Operations

associated with the object are join (called when an employee joins the organisation), leave

(called when an employee leaves the organisation), retire (called when the employee becomes a

pensioner of the organisation) and changeDetails (called when some employee information needs

to be modified). For examples, in Figure 5.2. two objects of class Employee are shown.

Figure 5.2. Instances of class Employee.

There are a lot of object-oriented systems where classes may have methods with similar name. In

this case, the services of this method are determined by the implementation of methods in the

classes. This is called polymorphism in the object-oriented design. In practice, polymorphism

49

appears at the design of the class hierarchy by inheritance. Figure 5.3. shows an example of

polymorphism. Classes Circle, Triangle and Square have the same method called area(). These

methods are implemented differently in all classes by application of different expression for

calculating the area.

Figure 5.3. Example of polymorphism.

Object-oriented systems are usually modelled by interacting objects. An object model represents

the static and most stable phenomena in a modelled domain. Main concepts are classes and

associations with attributes and operations. Aggregation and generalization with multiple

inheritances are predefined relationships. In UML the objects ant their static relationships are

presented by class diagrams.

UML supports stereotypes, which are an inbuilt mechanism for logically extending or altering

the meaning, display, characteristics or syntax of a basic UML model element such as class and

object. Extending classes in UML the next stereotypes are often used:

1. <<boundary>> stereotype. A boundary class represents a user interface.

2. <<entity>> stereotype. Entity classes represent manipulated units of information.

3. <<control>> stereotype. Control objects encapsulate logic that is not particularly related

to user interface issues.

UML representation of stereotypes applied to classes Car, Login and Bank account are shown in

Figure 5.4. together with an icon for their default representation.

50

Figure 5.4. Representation of stereotypes.

Dynamic models describe the dynamic structure of the system and show the interactions between

the system objects. Interactions that may be documented include the sequence of service requests

made by objects and the way in which the state of the system is related to these object

interactions. UML uses interaction diagrams such as sequence diagram to model dynamic

behaviour.

The interactions of a system with its environment can be modelled using an abstract approach

that does not include too much detail. The approach that is proposed in the RUP is to develop an

use-case model where each use-case represents an interaction with the system. Each of these use-

cases can be described in structured natural language. This helps designers identify objects in the

system and gives them an understanding of what the system is intended to do

5.1. Generalisation

Object classes can be arranged in a generalisation or inheritance hierarchy that shows the

relationship between general and more specific object classes. The more specific object class is

completely consistent with its parent class but includes further information. In the UML, an

arrow that points from a class entity to its parent class indicates generalisation. In object-oriented

51

programming languages, generalisation is implemented using inheritance. The child class

inherits attributes and operations from the parent class.

Figure 5.5. A generalisation hierarchy.

Figure 5.5. shows an example of an object class hierarchy where different classes of plane are

shown. Classes lower down the hierarchy have the same attributes and operations as their parent

classes but may add new attributes and operations or modify some of those from their parent

classes. Class Circle and Polygon contain same attributes and methods. Generalizing these

classes the same attributes and methods are added the class Plain. In this hierarchy the class Plain

is considered as parent class and classes Circle and Polygon are child classes. The relationship of

generalization is denoted by a hollow triangle shape on the parent class end of the line that

connects it to one or more child classes.

The generalisation relationship is often used to create base classes in order to derive subclasses.

These classes are called abstract classes and generally cannot be instantiated, but they can be

subclasses.

52

5.2. Association

Objects that are members of an object class participate in relationships with other objects. These

relationships may be modelled by describing the associations between the object classes. In the

UML, associations are denoted by a line between the object classes that may optionally be

annotated with information about the association. Association is a very general relationship and

is often used in the UML to indicate that either an attribute of an object is an associated object or

the implementation of an object method relies on the associated object. This association

relationship indicates that at least one of the two related classes make reference to the other. The

association relationship may have and an optional notation at each end indicating the multiplicity

of instances of that entity (the number of objects that participate in the association). Multiplicity

is given by an integer or an interval of integers. Examples multiplicities are given in the

following:

1. 1, exactly one instance participates in the association

2. 0..1, no instances, or one instance participates in the association

3. 0..*, zero or more instances participates in the association.

4. 9, exactly 9 instances participates in the association.

5. 3..9, the number of instances in the association between 3 and 9.

An example of association relationship is illustrated in Figure 5.6, which shows the association

between objects of class Firm and objects of class Manager and Worker. This association

represents relationships of such firms, managers and workers where 10 or more workers and 1, 2

or 3 managers work. A worker can be employed only at one firm but managers can be employed

at two firms at the same time.

53

Figure 5.6. Representation of an association model.

One of the most common associations is aggregation that represents a part-whole or part-of

relationship and illustrates how objects may be composed of other objects. Composition is a

stronger variant of aggregation. Composition usually has a strong life cycle dependency between

instances of the container class and instances of the contained class(es). If the container is

destroyed, normally every instance that it contains is destroyed as well.

5.3. Object-oriented design process

A software development methodology is an organized process of fundamental activities of

specification, development, validation and evolution and represents them as separate process

phases such as requirements specification, software analysis and design, implementation, testing

and so on.

The purpose of requirements specification phase is to define the complete functional and non-

functional software requirements for the system. Domain requirements are a subcategory of

requirements. These are requirements that come from the application domain of the system and

that reflect characteristics and constraints of that domain.

The overall purpose of the analysis and design phases is to understand and model the application

domain and to translate the requirements into a specification of how to implement the system.

Analysis and design phases result in analysis and design model. Analysis is mainly involved with

transforming the requirements into an architecture and collection of components that could fully

support an implementation of the proposed system. The design model serves as an abstraction of

the source code, it consists of design classes structured into design packages and design

subsystems with well-defined interfaces, representing what will become components in the

implementation.

The general process for an object-oriented design has a number of stages:

1. Understand and define the context and the modes of use of the system.

54

2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.

5. Specify object interfaces.

Although these activities look separate stages the object-oriented design is not a simple, well-

structured process. All of the above activities are interleaved and so influence each other. Objects

are identified and the interfaces fully or partially specified as the architecture of the system is

defined. As object models are produced, these individual object definitions may be refined,

which leads to changes to the system architecture.

5.3.1. System context and models of use

The first stage in any software design process is to develop an understanding of the relationships

between the software and its external environment. This helps to provide the required system

functionality and structure the system to communicate with its environment. The system context

and the model of system use represent two complementary models of the relationships between a

system and its environment:

1. The system context is a static model that describes the other systems in that environment.

2. The model of the system use is a dynamic model that describes how the system actually

interacts with its environment.

The context model of a system may be represented using associations where a simple block

diagram of the overall system architecture is produced. The interactions of a system with its

environment can be modelled by use-case models where each use-case represents an interaction

with the system. Use-cases can be described in structured natural language. This helps designers

identify objects in the system and gives them an understanding of what the system is intended to

do.

55

5.3.2. Architectural design

The system architecture can be represented by a number of architectural views. These views

capture the major structural design decisions. Architectural views are the abstractions or

simplifications of the entire design, in which important characteristics are made more visible by

leaving details aside.

Design activities are centred around the notion of architecture. Once the interactions between the

software system and its environment have been defined by use case models, this information can

be used as a basis for designing the system architecture. During architectural design the

architecturally significant use cases are selected by performing use case analysis on each one and

the system is decomposed to a collection of interacting components.

In UML the architecture of system can be represented by a component diagram. It shows a

collection of model elements, such as components, and implementation subsystems, and their

relationships, connected as a graph to each other. Component diagrams can be organized into,

and owned by implementation sub-systems, which show only what is relevant within a particular

implementation subsystem.

5.3.3. Object and class identification

The analysis process starts with the identification of a set of conceptual classes that are the

categories of things which are of significance in the system domain. When identifying

appropriate classes, a good understanding of the system domain is important.

Possible classes for inclusion may emerge during the course of the requirements specification

process. There are a number of other techniques can be used to help identify appropriate classes

from a requirements document. Because a class is conceptually a set of objects of the same kind

and objects represent things in the system domain, nouns and noun phrases in the requirements

document can be used to identifying possible classes. There have been various proposals to

identify object classes:

56

1. Grammatical analysis of a natural language description of a system. Objects and

attributes are nouns; operations or services are verbs.

2. Using tangible entities, things, in the application domain such as car, roles such as

worker, events such as request, interactions such as meetings, locations such as offices

and so on.

3. Using a behavioural approach where the designer first understands the overall behaviour

of the system. The various behaviours are assigned to different parts of the system and an

understanding is derived of who initiates and participates in these behaviours.

Participants who play significant roles are recognised as objects.

4. Using a scenario-based analysis where various scenarios of system use are identified and

analysed in turn. As each scenario is analysed, the team responsible for the analysis must

identify the required objects, attributes and operations.

These approaches help to get started with object identification. Further information from

application domain knowledge or scenario analysis may then be used to refine and extend the

initial objects. This information may be collected from requirements documents, from

discussions with users and from an analysis of existing systems.

5.3.4. Design models

Design models show the objects or object classes in a system and the relationships between these

entities. The design of system essentially consists of design models. Design models can be

considered as a transformation of system requirements to a specification of how to implement the

system. Design models have to be abstract enough to hide the unnecessary details. However,

they also have to include enough detail for programmers to make implementation decisions.

In general, models are developed at different levels of detail. An important step in the design

process, therefore, is to decide which design models has to be developed and the level of detail

of these models. This usually depends on the type of system that is being developed. There are

two types of models that should be produced to describe an object-oriented design:

57

1. Static models. They describe the static structure of the system using object classes and

their relationships. Important relationships are the association, generalisation,

dependency, aggregation and composition relationships.

2. Dynamic models. They describe the dynamic structure of the system and show the

interactions between the system objects. Interactions that may be documented include the

sequence of service requests made by objects and the way in which the state of the

system is related to these object interactions.

The UML provides for 14 different static and dynamic models that may be produced to

document a design. For examples, some models:

1. Sub-system models. This model shows logical groupings of objects into coherent sub-

systems. These are represented using a form of class diagram where each sub-system is

shown as a package. Sub-system models are static models.

2. Sequence models. This model shows the sequence of object interactions. These are

represented using an UML sequence or a collaboration diagram. Sequence models are

dynamic models.

3. State machine models. This model shows how individual objects change their state in

response to events. These are represented in the UML using state-chart diagrams. State

machine models are dynamic models.

Other models will be discussed in the next chapters: use-case models show interactions with the

system; object models describe the object classes; generalisation or inheritance show how classes

may be generalisations of other classes; and aggregation models show how collections of objects

are related.

5.3.5. Object interface specification

Software components communicate each other using their interfaces. Object interface design is

concerned with specifying the detail of the interface to an object or to a group of objects.

The same object may have several interfaces, each of which is a viewpoint on the methods that it

provides. Equally, a group of objects may all be accessed through a single interface.

58

The interface representation should be hidden and object operations are provided to access and

update the data. If the representation is hidden, it can be changed without affecting the objects

that use these attributes. This leads to a design that is inherently more maintainable.

Interfaces can be specified in the UML using the same notation as in a class diagram. However,

there is no attribute section, and the UML stereotype <<interface>> should be included in the

name part.

Chapter 6. Unified Modelling Language

Due to the rapid development in computer hardware the complexity of computer-based systems

continuously increases. New technologies resulting from developments place new demands on

software and software engineers. Producing and maintaining high-quality software systems cost-

effectively is essential for software industry.

Activities involved in software development such as software specification, design and

implementation have already well understood to produce large and complex software systems.

But application of unified notations, languages and modelling tools can reduce the development

costs effectively. The Unified Modelling Language (UML) is such a language. In the last

decades, the most significant developments in software engineering are related the emergence of

the UML as a standard for object-oriented system description.

In the years after 1980 many object-oriented modelling techniques were being developed to

model software development processes. These modelling techniques used different visual

modelling techniques and notations.

Three methodologies among them have become popular: the Object Modelling Technique (Jim

Rumbaugh), the Object-Oriented Software Engineering method (Ivar Jacobson) and Booch

method (Grady Booch). In the mid of 1990s, Rational Software integrated the methods of Object

Modelling Technique and Booch method into version 0.8 of UML what was then called the

Unified Method. In 1995, Jacobson, who developed Object-Oriented Software Engineering

method, joined Rational Software and together with Rumbaugh and Booch developed version 0.9

59

of the Unified Method in 1996. Later other IT companies joined the UML Consortium

developing UML. In 1997 they submitted version 1.0 of the Unified Method, renamed as the

Unified Modelling Language to the independent standards body Object management Group. As

an independent standards body, the OMG took over the UML development and released

subsequent versions of the UML. The latest version, UML 2.5, is released by OMG in 2013.

Although the UML is a standard OMG the UML is not just for modelling object-oriented

software applications. The UML is a graphical language that was designed to be very flexible

and customizable.

The UML features an underlying meta-model that enables the UML to be flexible enough so that

you can do what you need to do with it.

A meta-model is a model of a model. The UML meta-model expresses the proper semantics and

structure for UML models. A UML model is made up of many different elements. The meta-

model defines the characteristics of these elements, the ways in which these elements can be

related, and what such relationships mean. In other words, the UML meta-model sets the rules

for how it can be used to model.

The UML meta-model is also the foundation for UML's extensibility. Using the definitions of

UML elements in the meta-model new UML modelling elements can be created. We can add

additional properties to the new elements. This allows to give additional characteristics and

behaviours to the new element for specific needs, while it still remains compliant with the

structure and semantics of the original element that it was based upon. In this way, users can

customize the UML to their specific needs.

The ability of extensibility makes UML to accommodate present as well as future needs. It

makes possible to model different systems such as software and business system in the same

language that helps the communications of developers and helps easier to understand

developments of different areas.

60

6.1. Model, modelling

In a general sense, a model is anything used in any way to represent anything else. A model is

considered a simplified, abstract view of a complex reality. It can represent objects, phenomena,

and processes in a logical way. Modelling helps to better understand the processes and to

develop systems that have to meet prescribed requirements. Modelling helps to identify how

changes will affect the system. It can help to identify strengths and weaknesses, identify areas

that need to be changed or optimized and simulate different process options. It also helps to

communicate designs, to clarify complex problems, and ensure that designs come closer to

reality prior to implementation. This can save a lot of time and money for the organization, and it

enables teams of people to work together more effectively. In software industry modelling is

primarily used to visually model the static and dynamic views of software.

UML provides a common modelling language to bring together business analysts, software

developers, architects, testers, database designers, and the many other professionals who are

involved in software design and development so that they can understand the business, its

requirements, and how the software and architectures will be created. A business analyst who

practiced in using UML can understand what a software developer is creating using the UML

because the UML is a common language. With the ongoing need to think globally when building

software, the ability provided by the UML to communicate globally becomes very important.

The UML can be applied to model business processes, database design, application architectures,

hardware designs, and much more. Designing software and systems is a complicated task

requiring the coordinated efforts of different groups performing various activities: define of

requirements for business and systems, designing software components, constructing databases,

assembling hardware to support the systems, and so on.

In UML different types of diagrams can be used to create various types of models. The UML

models consist of different diagram types, model elements, and linkages between model

elements. These models are to describe different information from different viewpoints.

61

6.2. Diagrams in UML

UML diagrams represent two different views of a system model:

1. Static (or structural) view: emphasizes the static structure of the system using objects,

attributes, operations and relationships. The structural view includes class diagrams and

composite structure diagrams.

2. Dynamic (or behavioural) view: emphasizes the dynamic behaviour of the system by

showing collaborations among objects and changes to the internal states of objects. This

view includes sequence diagrams, activity diagrams and state machine diagrams.

UML has 14 types of diagrams divided into two categories. Seven diagram types represent

structural information, and the other seven represent general types of behaviour, including four

that represent different aspects of interactions.

UML does not restrict UML element types to a certain diagram type. In general, every UML

element may appear on almost all types of diagrams. UML profiles may define additional

diagram types or extend existing diagrams with additional notations.

Structure diagrams emphasize the things that must be present in the system being modelled.

Since structure diagrams represent the structure, they are used extensively in documenting the

software architecture of software systems. The UML structure diagrams are the followings:

1. Class diagram describes the structure of a system by showing the system's classes, their

attributes, and the relationships among the classes.

2. Component diagram describes how a software system is split up into components and

shows the dependencies among these components.

3. Composite structure diagram describes the internal structure of a class and the

collaborations that this structure makes possible.

4. Deployment diagram describes the hardware used in system implementations and the

execution environments and artifacts deployed on the hardware.

5. Object diagram shows a complete or partial view of the structure of an example modelled

system at a specific time.

62

6. Package diagram describes how a system is split up into logical groupings by showing

the dependencies among these groupings.

7. Profile diagram operates at the meta-model level to show stereotypes as classes with the

<<stereotype>> stereotype, and profiles as packages with the <<profile>> stereotype.

The extension relation (solid line with closed, filled arrowhead) indicates what meta-

model element a given stereotype is extending.

Behaviour diagrams emphasize what must happen in the system being modelled. Since

behaviour diagrams illustrate the behaviour of a system, they are used extensively to describe the

functionality of software systems:

1. Activity diagram describes the business and operational step-by-step workflows of

components in a system. An activity diagram shows the overall flow of control.

2. State machine diagram describes the states and state transitions of the system.

3. Use Case diagram describes the functionality provided by a system in terms of actors,

their goals represented as use cases, and any dependencies among those use cases.

Interaction diagrams, a subset of behaviour diagrams, emphasize the flow of control and data

among the things in the system being modelled:

1. Communication diagram shows the interactions between objects or parts in terms of

sequenced messages. They represent a combination of information taken from Class,

Sequence, and Use Case Diagrams describing both the static structure and dynamic

behaviour of a system.

2. Interaction overview diagram provides an overview in which the nodes represent

communication diagrams.

3. Sequence diagram shows how objects communicate with each other in terms of a

sequence of messages. Also indicates the lifespans of objects relative to those message.

4. Timing diagram a specific type of interaction diagram where the focus is on timing

constraints.

63

6.3. Business models

UML is frequently used in the area of business modelling. Examples of simple business models

can effectively present the practical use of UML and provide a good starting point to solve more

complex developments. The purpose of this section is to introduce the use of UML diagrams,

model elements, and linkages through a simple business modelling example. More examples

provided in the next chapters to understand UML in more detail.

Business model is an abstract representation of a business that provides a simplified look at

various aspects of the business. A business isn't represented with just one type of business model.

Different models will emphasize certain business characteristics or concepts while hiding other

aspects at the same time. The simplest business models are the organization charts, which are

models of a business's overall organizational structure. Other models such as business process

models show specific business functions by sequence of activities.

Each model provides a different view of the business. In the case of an overall business model it

is requested to model the structure and interactions between the business's organizations,

stakeholders, customers, workers, business functions, business assets, etc.

The business model should also reflect the architecture, the static structures in the company, the

flows of business activities, that is, the dynamic behavior of the elements in the architecture.

When modelling a business using the UML first the next questions is generally considered:

1. Who will be related to business?

2. What do they want your business to do for them?

3. How does your business meet its needs?

For an example, let us consider an retail shop. People, like customer, seller, shipping worker, etc.

or systems, like shipping companies, suppliers, etc. can relate this business. All these people and

systems play a role related to this business and they are called business actors. Figure 6.1. Shows

UML representation of business actors.

64

Figure 6.1. Business actors related to retail shop.

The reasons or goals for business actors interacts retail shop may be the followings:

1. customers purchase products,

2. sellers billing,

3. sales manager orders goods,

4. shipping companies deliver products to retail shop,

5. bank manages account,

6. and more.

For these needs retail shop provides services or business. Some typical business functions in

retail might be the following:

1. Goods order,

2. Ship order,

3. Shipping,

4. Billing,

5. Storage,

6. And more.

These actions are called business use cases when business actors will use the business.

 Figure 6.2. Shows the UML representation of business use cases.

65

Figure 6.2. UML business use cases for retail shop.

6.3.1. Business use case diagrams

The business use case diagram represents the functionality of business system in term of business

actors. Their goals are represented by business use cases. Use case diagram also shows what is

outside of business (the business actors), what is inside the business (the business use cases), and

the relationships between the two (Figure 6.3.).

Figure 6.3. Business use case diagram.

The lines with arrowheads between a business actor and business use case are association.

Associations define a relationship between the two model elements they connect. The direction

of the arrow shows which element initiates the activity. In the example in Figure 6.3., the

66

transport worker uses or initiates the Shipping business use case. An association can exist

without an arrowhead representing a bi-directional communication path.

Besides association UML contains various linkages defining relationships between elements.

They are listed in Table 6.1.

Table 6.1. Relationships used in UML.

 Notation Description

67

Association Logical connection or relationship

between classes

Bi-directional

association
 Bi directional logical connection or

relationship between classes

Generalization

The generalization relationship indicates

that one of the two related classes (the

subclass) is considered to be a

specialized form of the other (the super

type) and superclass is considered as

generalization of subclass.

Dependency Dependency indicates that one class

depends on another because it uses it at

some point in time.

Aggregation Aggregation is an association that

represents a part-whole relationship.

Composition Composition is a stronger variant of

association relationship. Composition

usually has a strong life cycle

dependency between instances of the

container class and instances of the

contained class (es): If the container is

destroyed, normally every instance that

it contains is destroyed as well.

Realization A realization relationship is a

relationship between two model

elements, in which one model element

(the client) realizes (implements or

executes) the behavior that the other

model element (the supplier) specifies.

68

6.3.1.1. Use case relationships

Use cases can have relationships with other use cases. UML defines two directed relationships

between use cases, the include and extend relationships.

For an example of these relationships let’s again consider the retail shop business example. In

business process models the specific business functions (business use cases) can be modeled by a

flow of different activities and could have many different alternate scenarios. Both use case

Goods Order and Ship Order certainly includes the activity Send Order. The include relationship

in this respect means that the included use case (Send Order) behavior is inserted in the flow of

the base use case(S) (Goods Order, Ship Order).

This common behaviour can be represented by a dashed arrow with an open arrowhead from the

including (base) use case to the included (common part) use case. The arrow is labelled with the

keyword «include» (Figure 6.4.).

Figure 6.4. UML representation of include relationship.

Scenarios of business use cases in retail business system can be extended by much different

optional behaviour. For example the use case Billing can be extended by the optional extending

use case Payment by Card. This behavior can be represented by the extend relationship. It means

that the extending use case (Payment by Card) optionally may change the flow (scenario) of the

base use case (Billing). Extend relationship is shown as a dashed line with an open arrowhead

directed from the extending use case to the extended (base) use case. The arrow is labelled with

the keyword «extend» (Figure 6.5.).

69

Figure 6.5. UML representation of extend relationship.

Includes and extends relationships are useful tools to structure use case models, identify common

use cases and simplify complex scenarios.

6.3.1.2. Generalization

Business actors are the people or any system that interact with business system. They are not a

specific people or system they represent a role that the actor plays with respect to business

system. An actor can also represent a set of roles. In this case the actor can be represented by an

actor who inherits several actors and each inherited actor represents one of the roles. In the other

case several actors can play the same role in a particular use case. In this case the shared role can

be modeled as an actor inherited by the original actors.

In the generalization of use cases a parent use case may be specialized into one or more child use

cases that represent more specific forms of the parent. A child inherits all structure, behaviour,

and relationships of the parent. Generalization is used when two or more use cases have common

behavior, structure, and purpose. In this case the shared parts are captured in a new abstract use

case that can be specialized by child use cases.

6.3.1.3. Activity diagrams

Considering again the retail shop example, now we have known the people, businesses, and

systems interacting the business and we know what services are provided to meet their needs.

What we have to understand now is how business actors interacts the system to provide the

business use cases. What are the steps taken and by whom? Business use cases are described by a

flow of separate activities. Scenarios define these activities in a textual form and they are called

actions in UML. For the graphical representation of activities UML uses activity diagrams.

70

Activity diagram makes the flow of activities visible and show how a use case is realized. The

elements of UML activity diagram are shown in Table 6.2.

Table 6.2. Elements of activity diagram.

Notation Description

This element represents the start (initial

state) of the workflow

The encircled black circle represents the

end (final state) of the workflow.

Rounded rectangles represent actions

Diamonds represent decision points.

 Synchronization point. Black bar

represents the start (split) or end (join)

of concurrent activities.

 Arrows run from the start towards the

end and represent the order in which

activities happen.

During design phase business use cases are usually described by alternate scenarios.

For an example the use case Sale Process can be realised by the following scenario:

1. Customer enters retail shop.

2. Customer chooses products.

3. Customer presents products to seller.

4. Seller scans all products.

5. Seller provides total cost.

71

6. Seller inquires the payment method.

7. If customer provides payment by cash customer pass payment and seller

accepts it, otherwise payment is by credit card and customer authorizes

payment by giving PIN code.

8. Customer receives receipt and products.

9. Customer leaves shop.

This scenario gives the activity diagram shown in Figure 6.6. The activity diagram

shows how Customer and Seller interacts the business system in the realization of use

case Sale Process. The two business actors are shown at the top of the columns in the

diagram. These columns are called swimlanes. Any activity in a given column is

performed by the actor listed at the top of the swimlane. The flow starts at the start

state and flows as indicated by the arrows.

At the decision point the flow of activities is controlled by the payment method

required by Seller.

The diagram show two activities, Receive Receipt and Receive Products, can happen

in parallel. This is shown in activity diagram by using a synchronization point. The

two flows that come out of the bar indicate that they can happen independently. When

two or more flows come into a synchronization point, it indicates that the workflow

cannot continue until all the inflowing activities are complete. The last activity,

Customer Leaves, is the terminating activity to the flow.

72

Figure 6.6. The activity diagram of use case Sale Process.

73

6.3.2. Business analysis model

After development of business use case models and realizing the use cases by activity

diagrams we have the knowledge of how business actors outside of business want to

use the system, how they interacts the system and what services the system provides

for them. Now the purpose is to find what people, assets, etc. will be used to provide

the services of business. Review of business use case diagrams and activity diagrams

helps to determine business workers (internal people) and business entities (assets,

information, etc.) that are involved in these activities. Figure 6.7. shows an example of

business workers and business entities for the retail shop.

Figure 6.7. Business workers and entities for retail shop.

The relations between business workers and entities are shown in the business

analysis model. This provides an inside look at how people interact with other

business workers, business actors, and business entities to achieve the business

processes defined in the business use case model.

74

A partial business objects diagram is shown in Figure 6.8. including business workers,

business entities and their static relationships.

Figure 6.8. Business object diagram for retail shop.

6.3.2.1. Sequence diagrams

The business objects diagram presented in the previous section captured the static

relationships between the business actors, workers and entities. The view of dynamic

interactions between these elements over time is also an important aspect in system

development. The dynamic views of the system can be represented by using a type of

UML interaction diagram called sequence diagram. A sequence diagram shows all the

interactions between the model elements for a given scenario arranged in a time

sequence. It represents graphically how object interacts each other by messages [18].

For an example let’s consider the sequence diagram shown in Figure 6.9. In the

diagram a scenario of an online order process is captured. The purpose of using

75

sequence diagram is the graphical representation of interactions between objects that

realise the functionality of the given scenario. Objects that live simultaneously are

shown as parallel vertical lifelines and horizontal arrows represent the messages

exchanged between them.

Diagram shows how the online order process is realised in a time sequence:

1. An Order Entry Window object (instantiated by an business actor) send a

message „prepare” to Order object

2. An Order object send a message „prepare” to OrderLine for all order line in the

order.

3. Every Order Line objects send a „check” message to the related Stock Item

object to check the amount of item in the stock. If the required amount of item

is available the Stock Item reduces the amount of available item in the stock by

the amount of ordered item. If the amount of item in stock is not sufficient

Stock Item object creates a Reorder Item object and then Order Line object

creates a new Delivery Item object.

4. It is shown in the diagram that an object may send message to itself. This event

is indicated by a line returning back to itself and called self-delegation.

5. The diagram also shows an example of the use of iteration marker of *.

Application of iteration marker provides a multiple send of message prepare()

to Order Line object, i.e. Order object creates as many Order Line objects as

included in order. In the diagram three conditional events are captured.

6. Stock Item object creates a Reorder Item object only if needsToReorder==true,

Order Line object creates a new Delivery Item object if hasStock==false and

Stock Item object reduces the amount of item if hasStock=true.

7. For en example the diagram contains a return arrow indicating that the control

is given back to Order Line object after reorder Item objects is created.

76

Figure 6.9. Sequence diagram of online order.

6.3.2.2. Concurrent processes

Sequence diagrams are also capable to represent dynamic interaction of concurrent

objects. The example shown in Figure 6.10. depicts objects controlling transactions in

a bank.

After the Transaction object is instantiated it creates (by new method) a Transaction

Coordinator object. Transaction Coordinator has a function to check the transaction. It

creates as many Transaction Checker object as several control task has to be done in

accordance with bank rules. In this example two of them (first and second) are

created. Both have the own independent control function. The two control tasks are

carried out in parallel and there is no need for any timing or synchronization between

them. They operate asynchronously. As one of Transaction Checker finishes its

control task notifies the Transaction Coordinator object. At this time Transaction

77

Coordinator object checks whether other Transaction Checker has finished its task. If

both control task are finished Transaction Coordinator object send a message to

Transaction object that transaction is OK.

The rectangles located along lifelines indicate a time interval during which object is

activated. These rectangles are called activation. Some of the arrowhead on Figure

6.10. are incomplete. These half-arrowheads denote asynchronous messages. If an

object sends an asynchronous message, it can continue processing and doesn’t have to

wait for a response. Asynchronous messages sent to an object start a new thread or

communicate an existing thread.

Figure 6.10. Representation of concurrent processes in sequence diagram

Chapter 7. Requirements analysis

78

The phases of requirements analysis and design are discussed in the frame of the

Rational Unified Process (RUP) software development process in the next two

chapters. RUP is based on the Unified Modelling Language (UML) as an object-

oriented graphical modelling language, so the practical examples presented should not

be considered general in the practice of other development methodologies

The purpose of requirements discipline in RUP is to definition of the requirement

specification capturing the complete functional and non-functional software

requirements for the system.

It is important, first of all, to understand the definition and scope of the problem

which we are trying to solve with this system. The models developed during Business

Modelling can serve as valuable input to this effort. Business modelling helps to

understand the structure and the dynamics of the organization in which a system is to

be deployed and derive the system requirements needed to support the target

organization.

A requirement is defined as a condition or capability to which a system must conform.

Requirements management is a systematic approach to finding, documenting,

organizing and tracking the changing requirements of a system.

There are many different kinds of requirements. Requirements are usually looked

upon as statements of text fitting into one of the following categories:

1. User requirements. User requirements focus on the needs and goals of the end

users. They are statements of what services the system is expected to provide

and the constraints under which it must operate.

2. System requirements. They set out the system’s functions, services and

operational constraints in detail.

79

Software system requirements are often classified as functional and non-functional

requirements:

1. Functional requirements. They specify actions that a system must be able to

perform, without taking physical constraints into consideration. Functional

requirements thus specify the input and output behaviour of a system.

2. Non-functional requirements. Many requirements are non-functional, and

describe only attributes of the system or attributes of the system environment.

They are often categorized as usability, reliability, performance, and

substitutability requirements. They are often requirements that specify need of

compliance with any legal and regulatory requirements. They can also be

design constraints due to the operating system used, the platform environment,

compatibility issues, or any application standards that apply.

Domain requirements are a subcategory of requirements. These are requirements that

come from the application domain of the system and that reflect characteristics and

constraints of that domain. They are formulated by domain-specific terminology.

They may be functional or non-functional requirements.

The user requirements are provided by functional requirements. The functional

requirements are often best described in a UML use-case model and in use cases.

Every functionality of system is modelled by one or more use cases.

The general objectives of the requirements discipline is:

1. To establish and maintain agreement with the customers and other stakeholders

on what the system should do.

2. To provide system developers with a better understanding of the system

requirements.

3. To define the boundaries of the system.

80

4. To provide a basis for planning the technical contents of iterations.

5. To provide a basis for estimating cost and time to develop the system.

6. To define a user-interface for the system, focusing on the needs and goals of

the users.

In the frame of RUP methodology the activities and artifacts are organized into

workflow details as follows:

1. Analyze the Problem

2. Understand Stakeholder Needs

3. Define the System

4. Manage the Scope of the System

5. Refine the System Definition

6. Manage Changing Requirements

Each workflow detail represents a key skill that need to be applied to perform

effective requirements management. Analyze the Problem and Understand

Stakeholder Needs are focused on during the Inception phase of a project, whereas the

emphasis is on Define the System and Refine the System Definition during the

Elaboration phase. Manage the Scope of the System and Manage Changing

Requirements are done continuously throughout the development project.

The workflow details are listed above in the sequence that is most likely applied to the

first iteration of a new project. They are applied continuously in varied order as

needed throughout the project.

7.1. Analyse the problem

Problem analysis is done to understand problems, initial stakeholder needs, and

propose high-level solutions. It is an act of reasoning and analysis to find "the

81

problem behind the problem". During problem analysis, agreement is gained on the

real problems and stakeholders are identified. Also, initial boundaries of the solution

and constraints are defined from both technical and business perspectives.

The purpose of this workflow detail is to:

1. Gain agreement on the problem being solved,

2. Identify stakeholders,

3. Define the system boundaries, and

4. Identify constraints imposed on the system.

7.1.1. Definition of glossary

The first step in any problem analysis is to make sure that all parties involved agree on

what is the problem that we are trying to solve with our system. In order to avoid

misunderstandings, it is important to agree on common terminology which will be

used throughout the project and provide a consistent set of definitions for the system.

Early on, we should begin defining our project terms in a glossary which will be

maintained throughout the project lifecycle.

7.1.2. Find actors

In order to fully understand the problem, it is very important to identify the

stakeholders. Some of these stakeholders, the users of the system, will be represented

by actors in our use-case model.

A use-case model is a model of the system's intended functions and its surroundings,

and serves as a contract between the customer and the developers. It describes a

system's requirements in terms of use cases. The most important purpose of a use-case

model is to communicate the system's behaviour to the customer or end user.

82

The functionality of a system is defined by different use cases, each of which

represents a specific flow of events. The description of a use case defines what

happens in the system when the use case is performed. Each use case has a task of its

own to perform. The collected use cases constitute all the possible ways of using the

system.

To fully understand the system's purpose it must be known who the system is for, that

is, who will be using the system. Different user types are represented as actors. An

actor defines a role that users of the system can play when interacting with it. An actor

instance can be also played by either an individual or an external system. An actor

may be anything that exchanges data with the system. The difference between an actor

and an individual system user is that an actor represents a particular class of user

rather than an actual user. Several users can play the same role, which means they can

be one and the same actor. In that case, each user constitutes an instance of the actor.

The principal symbol representing an actor in UML is shown in Figure 7.1.

Figure 7.1. UML representation of an actor.

Finding the actors means the establishing the boundaries of the system, which helps in

understanding the purpose and extent of the system. Only those who directly

communicate with the system need to be considered as actors. The following set of

questions is useful to have in mind when you are identifying actors:

83

1. Who will supply, use, or remove information?

2. Who will use this functionality?

3. Who is interested in a certain requirement?

4. Where in the organization is the system used?

5. Who will support and maintain the system?

6. What are the system’s external resources?

7. What other systems will need to interact with this one?

After identifying an actor a brief description of it should be given including

information about:

1. What or who the actor represents.

2. Why the actor is needed.

3. What interests the actor has in the system.

7.1.3. Develop requirements management plan

Since requirements are things to which the system being built must be conform, it

makes sense to find out what the requirements are, write them down, organize them,

and track them in the event they change. The requirements management emphasizes

the importance of tracking changes to maintain agreements between stakeholders and

the project team.

The effective requirements management include maintaining a clear statement of the

requirements, along with applicable attributes for each requirement type and

traceability to other requirements and other project artifacts. It provides guidance on

the requirements artifacts that should be developed, the types of requirements that

should be managed for the project, the requirements attributes that should be collected

and the requirements traceability that will be used in managing the product

requirements.

84

A Requirements Management Plan specifies the control mechanisms which will be

used for measuring, reporting, and controlling changes to the product requirements.

7.1.4. Develop Project Vision document

The primary artifact in which we document the problem analysis information is the

Vision document, which identifies the high-level user or customer view of the system

to be built.

The Vision document provides a complete vision for the software system under

development and supports the contract between the funding authority and the

development organization. Every project needs a source for capturing the expectations

among stakeholders. The vision document is written from the customer’s perspective,

focusing on the essential features of the system and acceptable levels of quality. The

Vision should include a description of what features will be included. It should also

specify operational capacities (volumes, response times, accuracies), user profiles

(who will be using the system), and inter-operational interfaces with entities outside

the system boundary, where applicable. The Vision document provides the contractual

basis for the requirements visible to the stakeholders.

7.2. Understand stakeholder needs

The purpose of this workflow detail is to elicit and collect information from the

stakeholders of the project in order to understand what their needs are. The collected

stakeholder requests can be regarded as a "wish list" that will be used as primary input

to defining the high-level features of our system, as described in the Vision. This

activity is mainly performed during iterations in the inception and elaboration phases.

85

The key activity of this workflow is to elicit stakeholder requests using such input as

business rules, enhancement requests, interviews and requirements workshops. The

primary outputs are collections of prioritized features and their critical attributes.

This information results in a refinement of the Vision document, as well as a better

understanding of the requirements attributes. Another important output is an updated

Glossary of terms to facilitate common vocabulary among team members.

Also, during this workflow detail discussion of the functional requirements of the

system in terms of its use cases and actors is started. Those non-functional requirements,

which do not fit easily into the use-case model, should be documented in the

Supplementary Specifications.

7.2.1. Elicit stakeholder requests

In this step, the purpose is to elicit the stakeholder’s needs relating to the project.

Examples of stakeholders are investor, shareholder, buyer, designer, documentation

writer and so on. The following techniques can be applied to collect and elicit relevant

information from the stakeholders:

1. Interviews.

2. Requirements Workshop.

3. Brain-storming and idea reduction.

4. Use-Case Workshop.

5. Storyboarding.

6. Role playing.

7. Review of existing requirements.

86

7.2.2. Find use cases

After finding actors and collecting stakeholder’s needs we have to identify use cases

defining the functionality of the system. Use cases are a technique for capturing the

functional requirements of a system. A use case describes what happens in the system

when an actor interacts with the system to execute the use case, it specifies the

behaviour of a system or some subset of a system.

The collected use cases constitute all the possible ways of using the system. Each of

use cases represents a specific flow of events. Then Flow of Events of a use case

contains the most important information derived from use-case modelling work. It

should describe the use case's flow of events clearly enough for an outsider to easily

understand it. The flow of events should present what the system does, not how the

system is designed to perform the required behaviour.

Use cases are graphically represented as an oval with the name of its functionality

written below it (Figure 7.2.).

Figure 7.2. UML representation of an use case.

Following questions can be useful when identifying use cases:

1. For each actor you have identified, what are the tasks in which the system

would be involved?

2. Does the actor need to be informed about certain occurrences in the system?

3. Will the actor need to inform the system about sudden, external changes?

87

4. Does the system supply the business with the correct behaviour?

5. Can all features be performed by the use cases you have identified?

6. What use cases will support and maintain the system?

7. What information must be modified or created in the system?

Use cases that are often overlooked, since they do not represent what typically are the

primary functions of the system, can be of the following kind:

1. System start and stop.

2. Maintenance of the system. For example, adding new users and setting up user

profiles.

3. Maintenance of data stored in the system. For example, the system is

constructed to work in parallel with a legacy system, and data needs to be

synchronized between the two.

4. Functionality needed to modify behaviour in the system. An example would be

functionality for creating new reports.

Similarly to actors the brief description of the use case should be given reflecting its

purpose, the actors involved in the use case and the related glossary items.

Diagrams with actors, use cases, and relationships among them are called use-case

diagrams and illustrate relationships in the use-case model (Figure 7.3.).

88

Figure 7.3. Use case diagram in UML.

A use-case model is a model of the system's intended functions and its surroundings,

and serves as a contract between the customer and the developers. It describes a

system's requirements in terms of use cases.

7.2.3. Manage dependencies

The introduction of notion of requirements types helps separate the different levels of

abstraction and purposes of the requirements. Changes to requirements naturally

impact the models produced.

Keys to effective requirements management include maintaining a clear statement of

the requirements, along with applicable attributes for each requirement type and

traceability to other requirements and other project artifacts. A Requirements

Management Plan should be developed to specify the information and control

mechanisms that will be collected and used for measuring, reporting, and controlling

changes to the product requirements. Its purpose is to describe how the project will set

up requirements documents and requirement types, and their respective requirement

attributes and traceability. Using attributes requirements can be specified more:

89

1. It helps the allocation of resources

2. It helps the effective project monitoring

3. We can define metrics

4. We can manage risks

5. It helps to estimate costs

6. It helps to manage the Vision

Setting dependencies between requirements provides relations between them and we

can keep track how the changes in requirements influence other requirements. Regular

reviews, along with updates to the attributes and dependencies, should be done

whenever the requirements specifications are updated.

7.3. Define the system

The purpose of this workflow detail is to:

1. Align the project team in their understanding of the system.

2. Perform a high-level analysis on the results of collecting stakeholder requests.

3. Refine the Vision to include the features to include in the system, along with

appropriate attributes.

4. Refine the use-case model, to include outlined use cases.

5. More formally document the results in models and documents.

Problem Analysis and activities for Understanding Stakeholder Needs create early

iterations of key system definitions, including the features defined in the Vision

document, a first outline to the use-case model and the Requirements Attributes. In

Defining the System you will focus on identifying actorsand use cases more

completely, and expand the global non-functional requirements as defined in the

Supplementary Specifications. Refining and structuring the use-case model has three

main reasons for:

90

1. To make the use cases easier to understand.

2. To partition out common behaviour described within many use cases

3. To make the use-case model easier to maintain.

An aspect of organizing the use-case model for easier understanding is to group the

use cases into packages. A model structured into smaller units is easier to understand.

It is easier to show relationships among the model's main parts if they are expressed in

terms of packages. The use-case model can be organized as a hierarchy of use-case

packages, with "leaves" that are actors or use cases.

A use-case package contains a number of actors, use cases, their relationships, and

other packages; thus, there may be a multiple levels of use-case packages. Use-case

packages can reflect order, configuration, or delivery units in the finished system. The

packages can be organised according the principles:

1. A package of use cases can be related to a subsystem.

2. A package of use cases can be related to an actor.

3. Packages can be formed by any logical grouping.

7.4. Manage the scope of the system

The objectives of this workflow detail are to:

1. Prioritize and refine input to the selection of features and requirements that are

to be included in the current iteration.

2. Define the set of use cases (or scenarios) that represent some significant,

central functionality.

3. Define which requirement attributes and traceabilities to maintain.

The scope of a project is defined by the set of requirements allocated to it. Managing

project scope, to fit the available resources such as time, people, and money is key to

91

managing successful projects. Managing scope is a continuous activity that requires

iterative or incremental development, which breaks project scope into smaller more

manageable pieces.

Using requirement attributes, such as priority, effort, and risk, as the basis for

negotiating the inclusion of a requirement is a particularly useful technique for

managing scope.

Project scope should be managed continuously throughout the project. A better

understanding of system functionality is obtained from identifying most actors and

use cases. Non-functional requirements, which do not fit in the use-case model,

should be documented in the Supplementary Specifications. The values of

requirements attributes: priority, effort, cost, risk values etc., are determined from the

appropriate stakeholders. These will be used in planning the iterations and identifying

the architecturally significant use cases.

7.5. Refine the system definition

The purpose of this workflow detail is to further refine the requirements in order to:

1. Describe the use case's flow of events in detail.

2. Detail Supplementary Specifications.

3. Develop a Software Requirements Specification, if more detail is needed, and

4. Model and prototype the user interface.

The output of this workflow detail is a more in-depth understanding of system

functionality expressed in detailed use cases, revised and detailed Supplementary

Specifications, as well as user-interface elements. A formal Software Requirements

Specification may be developed, if needed, in addition to the detailed use cases and

Supplementary Specifications.

92

It is important to work closely with users and potential users of the system when

modelling and prototyping the user-interface. This may be used to address usability of

the system, to help uncover any previously undiscovered requirements and to further

refine the requirements definition.

The Requirements Management Plan defines the attributes to be tracked for each type

of requirement. The most important attributes are the benefit, the effort to implement,

the risk to the development effort, the stability, and architectural impact of each

requirement.

Regular reviews, along with updates to the attributes and dependencies, should be

done, as shown in the Manage Changing Requirements workflow detail, whenever the

requirements specifications are updated.

7.5.1. Details of use cases

The functionality of a system is defined by the use cases, each of which represents a

specific flow of events. A use case describes what happens in the system when an

actor interacts with the system to execute the use case. The use cases describe all the

possible ways of using the system. The use case does not define how the system

internally performs its tasks in terms of collaborating objects. This is left for the use-

case realizations to show.

In an executing system, an instance of a use case corresponds to a specific flow of

events that is invoked by an actor and executed as a sequence of events among a set of

objects. We call this the realization of the use case. Often, the same objects participate

in realizations of more than one use case.

The Flow of Events of a use case contains the most important information derived

from use-case modelling work. It should describe the use case's flow of events clearly

93

enough for an outsider to easily understand it. Guidelines for the contents of the flow

of events are:

1. Describe how the use case starts and ends

2. Describe what data is exchanged between the actor and the use case

3. Describe the flow of events, not only the functionality. To enforce this, start

every action with "When the actor ... "

4. Describe only the events that belong to the use case, and not what happens in

other use cases or outside of the system

5. Detail the flow of events, all "what" should be answered. Remember that test

designers are to use this text to identify test cases.

The two main parts of the flow of events are basic flow of events and alternative flows

of events. The basic flow of events should cover what "normally" happens when the

use case is performed. The alternative flows of events cover behaviour of optional or

exceptional character in relation to the normal behaviour, and also variations of the

normal behaviour.

Both the basic flow of events and the alternative flows events should be further

structured into steps or sub-flows. A sub-flow should be a segment of behaviour

within the use case that has a clear purpose, and is "atomic" in the sense that either all

or none of the actions is done.

7.5.2. Modelling and prototyping user-interface

The purpose of modelling user-interface is to build a model of the user interface that

supports the reasoning about, and the enhancement of, its usability. For each use case

prioritized to be considered from a usability perspective in the current iteration, we

have to take the following steps:

94

1. Describing the characteristics of actors related to use case

2. Creating a use-case storyboard. A use-case storyboard is a logical and

conceptual description of how a use case is provided by the user interface,

including the interaction required between the actors and the system. The use-

case storyboard has various properties, such as text fields and diagrams that

describe the usability aspects of the use case.

3. Describing the flow of events - storyboard. The step-by-step description of each

use case that is input to this activity need to be refined and focused on usability

issues; this refinement is captured in the Flow of Events - Storyboard property

of the use-case storyboard.

4. Capturing usability requirements on the use-case storyboard

5. Identification of boundary classes needed by the use-case storyboard. In this

step we identify the boundary classes needed to provide the user interface of

the use case.

6. Describe Interactions Between Boundary Objects and Actors. Illustration of the

interactions between the participating boundary objects by creating one or more

collaboration diagrams. The collaboration diagram should also show

interactions between the system and its actors. The flow of events usually

begins when one of the actors requests something from the system, since an

actor always invokes the use case.

For the identified boundary classes, we have to describe:

1. Responsibilities of boundary classes

2. Attributes of boundary classes

3. Relationships between boundary classes

4. Usability requirements on boundary classes

95

7.6. Manage changing requirements

The purpose of this workflow detail is to:

1. Evaluate formally submitted change requests and determine their impact on the

existing requirement set.

2. Structure the use-case model.

3. Set up appropriate requirements attributes and traceabilities.

4. Formally verify that the results of the Requirements discipline conform to the

customer's view of the system.

Changes to requirements naturally impact the developed models. Identifying the

relationships between requirements and other artifacts are the key to understanding

the impact of requirements change.

Regular reviews, along with updates to the attributes and dependencies, should be

done as shown in this workflow detail whenever the requirements specifications are

updated.

7.6.1. Structure the use case model

There are three main reasons for structuring the use-case model:

1. To make the use cases easier to understand.

2. To partition out common behaviour described within many use cases

3. To make the use-case model easier to maintain.

In order to structure the use cases models, we have three kinds of relationships: the

extend and include relationships between use cases and generalization.

Extend relationship between use cases

96

If there is a part of a base use case that is optional, or not necessary to understand the

primary purpose of the use case, it can be factor out to an addition use case in order to

simplify the structure of the base use case. The addition is implicitly inserted in the

base use case, using the extend-relationship

An extend-relationship is a relationship from an extension use case to a base use case,

specifying how the behaviour defined for the extension use case can be inserted into

the behaviour defined for the base use case. It is implicitly inserted in the sense that

the extension is not shown in the base use case. The extensions can be used for several

purposes:

1. To show that a part of a use case is optional, or potentially optional, system

behaviour.

2. To show that a sub-flow is executed only under certain conditions, such as

triggering an alarm.

3. To show that there may be a set of behaviour segments of which one or several

may be inserted at an extension point in a base use case. The behaviour

segments that are inserted will depend on the interaction with the actors during

the execution of the base use case.

The extension is conditional, which means its execution is dependent on what has

happened while executing the base use case. The base use case does not control the

conditions for the execution of the extension, the conditions are described within the

extend relationship. The extension use case may access and modify attributes of the

base use case. The base use case, however, cannot see the extensions and may not

access their attributes.

97

The base use case is implicitly modified by the extensions. We can say that the base

use case defines a modular framework into which extensions can be added, but the

base does not have any visibility of the specific extensions.

The base use case should be complete in and of itself, meaning that it should be

understandable and meaningful without any references to the extensions. However,

the base use case is not independent of the extensions, since it cannot be executed

without the possibility of following the extensions.

Figure 7.4. shows an example for application of extend relationship.

Figure 7.4. Representation of extend relationship.

Include relationship between use cases

If there is a part of a base use case that represents a function of which the use case

only depends on the result, not the method used to produce the result it can be

factored out to an addition use case. The addition is explicitly inserted in the base use

case, using the include-relationship.

An include-relationship is a relationship from a base use case to an inclusion use case,

specifying how the behaviour defined for the inclusion use case is explicitly inserted

into the behaviour defined for the base use case.

The include-relationship connects a base use case to an inclusion use case. The

inclusion use case is always abstract. It describes a behaviour segment that is inserted

98

into a use-case instance that is executing the base use case. The base use case has

control of the relationship to the inclusion and can depend on the result of performing

the inclusion, but neither the base nor the inclusion may access each other's attributes.

The inclusion is in this sense encapsulated, and represents behaviour that can be

reused in different base use cases.

Reasons for using the include-relationship are as follows:

1. Factor out behaviour from the base use case that is not necessary for the

understanding of the primary purpose of the use case, only the result of it is

important.

2. Factor out behaviour that is in common for two or more use cases.

The include relationship is shown in Figure 7.5.

Figure 7.5. representation of include relationship.

Generalization

If there are use cases that have commonalties in behaviour and structure and

similarities in purpose, their common parts can be factored out to a base use case

(parent) that is inherited by addition use cases (children). The child use cases can

insert new behaviour and modify existing behaviour in the structure they inherit from

the parent use case. A generalization is a taxonomic relationship between a more

general element and a more specific element. The more specific element is fully

consistent with the more general element, and contains additional information.

99

Many things in real life have common properties. Objects can have common

properties as well, which can be clarified using a generalization between their classes.

By extracting common properties into classes of their own, it is possible to change

and maintain the system more easily in the future.

A generalization shows that one class inherits from another. The inheriting class is

called a descendant. The class inherited from is called the ancestor. Inheritance means

that the definition of the ancestor including any properties such as attributes,

relationships, or operations on its objects is also valid for objects of the descendant.

The generalization is drawn from the descendant class to its ancestor class.

A use-case-generalization is a relationship from a child use case to a parent use case,

specifying how a child can specialise all behaviour and characteristics described for

the parent.

A parent use case may be specialized into one or more child use cases that represent

more specific forms of the parent. A child inherits all structure, behaviour, and

relationships of the parent. Children of the same parent are all specializations of the

parent. This is generalization as applicable to use cases.

Generalization is used when two or more use cases have commonalities in behaviour,

structure, and purpose. When this happens, the shared parts can be described in a new,

often abstract, use case that is then specialized by child use cases. The representation

of use case generalization is shown in Figure 7.6.

Figure 7.6. Use case generalization.

100

An actor-generalization from an actor type (descendant) to another actor type

(ancestor) indicates that the descendant inherits the role the ancestor can play in a use

case.

A user can play several roles in relation to the system, which means that the user may,

in fact, correspond to several actors. To make the model clearer, the user can be

represented by one actor who inherits several actors. Each inherited actor represents

one of the user's roles relative to the system.

Several actors can play the same role in a particular use case. The shared role is

modelled as an actor inherited by the two original actors. This relationship is shown

with actor-generalizations. The representation of use case generalization is shown in

Figure 7.7.

Figure 7.7. Use case generalization.

7.6.2. Review requirements

The purpose is to formally verify that the results of Requirements conform to the

customer's view of the system. The following guidelines are helpful when reviewing

the results of Requirements:

101

1. Always conduct reviews in a meeting format, although the meeting participants

might prepare some reviews on their own.

2. Continuously check what is produced to make sure the product quality is as

high as possible. Checkpoints are provided for this purpose; refer to the

checkpoints for each analysis activity. They can be used for informal review

meetings or in daily work.

3. Normally, the review should be divided into the following meetings:

1.

a. A review of change requests which impact the existing requirements set.

b. A review of the entire use-case model.

c. A review of the use cases, along with their diagrams. If the system is

large, break this review into several meetings, possibly one per Use-Case

Package or Software Requirements Specification.

2.Analysis and design

The overall purpose of the Analysis and design workflow is to translate the

requirements into a specification of how to implement the system. The activity spans a

range of abstraction, looking at fairly abstract architectural issues in the early

iterations but becoming increasingly detailed with later iterations. The main objectives

in this workflow are the followings :

1. To transform the requirements into a specification of how to implement the

system.

2. To evolve a robust architecture for the system. This means that system can be

easily changed when its functional requirements change.

102

3. To adapt the design to match the implementation environment, designing it for

performance.

Analysis and design results in a design model and optionally in an analysis model.

The design model serves as an abstraction of the source code; that is, the design model

acts as a ’blueprint’ of how the source code is structured and written. The design

model consists of design classes structured into design packages and design

subsystems with well-defined interfaces, representing what will become components

in the implementation. It also contains descriptions of how objects of these design

classes collaborate to perform use cases.

Design activities are centred around the notion of architecture. The production and

validation of this architecture is the main focus of early design iterations. Architecture

is represented by a number of architectural views. These views capture the major

structural design decisions. In essence, architectural views are abstractions or

simplifications of the entire design, in which important characteristics are made more

visible by leaving details aside.

Analysis is mainly involved with transforming the requirements into an architecture

and collection of components that could fully support an implementation of the

proposed system. The focus is mainly on functional requirements and the creation of a

number of design components. Analysis creates an idealised view of the design of the

system that will be likely modified during detailed design.

The analysis model is usually an abstraction of the design model it is the primary

artifact of the workflow detail called Analyze Behaviour. It is a platform independent

model, which means that it does not contain technology-based decisions. It omits

much of the detail of the design model.

103

The major content of the analysis model includes UML collaborations, which group

class and sequence diagrams. The collaborations are traced back to the use cases from

which they are realized, using an UML realization relationship. The analysis model

also contains analysis classes, which are organized according to the logical

architectural pattern.

Design begins where analysis leaves off. Taking the idealised design as the starting

point the design process attempts to create the framework for an implementation that

is able to meet all the non-functional requirements that are largely ignored in the

analysis phase. Design should be detailed enough that it determines the structure of

the implementation sufficiently that we can be sure any implementation meeting the

design will satisfy the requirements. A consequence of this is that the level at which

design stops will vary depending on the experience of the implementation team, the

nature of the development environment, and the precision to which the requirements

are specified.

The design model is the primary artifact of the analysis and design workflow. It

comprises class definitions and how they collaborate to provide requirements

specified by use cases. These may be further aggregated into packages and

subsystems that group related classes to allow us to hide unnecessary detail where

necessary.

Design ensures that non-functional requirements are met. The design model has a

mixture of behaviour and technology, and is considered a platform-specific model.

In the frame of RUP methodology the activities and artifacts are organized into

workflow details as follows:

1. Define a candidate architecture.

2. Refine the architecture.

104

3. Analyze behaviour.

4. Design components.

8.1. Define a candidate architecture

In this workflow detail some candidate architectures are proposed and tested against

the relevant use cases. The purpose of this workflow detail is to:

1. Create the candidate architecture of the system

a. Define an initial set of architecturally significant elements to be used as

the basis for analysis.

b. Define an initial set of analysis mechanisms.

c. Define the initial layering and organization of the system.

d. Define the use-case realizations to be addressed in the current iteration.

2. Identify analysis classes from the architecturally significant use cases.

3. Update the use-case realizations with analysis class interactions.

We perform an initial pass at the architecture, then we choose architecturally

significant use cases, performing an Use-Case Analysis on each one. After each use

case is analyzed, we update the architecture as needed to reflect adaptations required

to accommodate new behaviour of the system and to address potential architectural

problems which are identified.

8.1.1. Architectural analyzis

In this activity the purpose is:

1. To define a candidate architecture for the system, based on experience gained

from similar systems or in similar problem domains.

2. To define the architectural patterns, key mechanisms and modelling

conventions for the system.

105

3. To define the reuse strategy.

4. To provide input to the planning process.

Where the architecture already exists, either from a prior project or iteration, change

requests may need to be created to change the architecture to account for the new

behaviour the system must support. These changes may be to any artifact in the

process, depending on the scope of the change.

Analysis pattern

An analysis mechanism represents a pattern that constitutes a common solution to a

common problem. They may show patterns of structure, patterns of behaviour, or

both. They are used during analysis to reduce the complexity of analysis, and to

improve its consistency by providing designers with a short-hand representation for

complex behaviour. Mechanisms allow the analysis effort to focus on translating the

functional requirements into software. Analysis mechanisms often result from the

instantiation of one or more architectural or analysis patterns. They provide specific

behaviours to a domain-related class or component, or correspond to the

implementation of cooperation between classes and/or components [8].

Reuse strategy

Developing reuse strategy the reusable elements have to be identified and the

possibilities for reuse have to be investigated.

Layers

The design model is normally organized in layers that are a common architectural

pattern for moderate to large sized systems.

106

Subsystems should be organized into layers with application-specific sub-systems

located in the upper layers of the architecture, hardware and operating-specific

subsystems located in the lower layers of the architecture, and general-purpose

services occupying the middleware layers.

Layering represents an ordered grouping of functionality, with the application-specific

located in the upper layers, functionality that spans application domains in the middle

layers, and functionality specific to the deployment environment at the lower layers.

The number and composition of layers is dependent upon the complexity of both the

problem domain and the solution space.

The following sample architecture has four layers:

1. The top layer, application layer, contains the application specific services.

2. The next layer, business-specific layer, contains business specific components,

used in several applications.

3. The middleware layer contains components such as GUI-builders, interfaces to

database management systems, platform-independent operating system

services, and OLE-components such as spreadsheets and diagram editors.

4. The bottom layer, system software layer, contains components such as

operating systems, databases, interfaces to specific hardware and so on.

Layering provides a logical partitioning of sub-systems into a number of sets, with

certain rules as to how relationships can be formed between layers. The layering

provides a way to restrict inter-subsystem dependencies, with the result that the

system is more loosely coupled and therefore more easily maintained.

Subsystems and packages within a particular layer should only depend upon

subsystems within the same layer, and at the next lower layer.

107

Packages

UML uses packages to structure models into smaller elements. A model structured

into smaller units is easier to understand. It is easier to show relationships among the

model's main parts if they are expressed in terms of packages. A package is either the

top-level package of the model, or stereotyped as an use-case package.

By grouping model elements into packages and subsystems, then showing how those

groupings relate to one another, it is easier to understand the overall structure of the

model. A package should be identified for each group of classes that are functionally

related. Packages can be specialized and stereotyped (Figure 8.1.).

Figure 8.1. Representation of UML packages.

If a class in one package has an association to a class in a different package, then these

packages depend on each other. Package dependencies are modelled using a

dependency relationship between the packages. Figure 8.2. shows dependency

between two packages.

Figure 8.2. Representing dependency of packages.

108

Use cases describe interacts between actors and systems, they specify the functional

behaviour of a system or subsystem.

A use-case realization describes how a particular use case is realized within the

model, in terms of collaborating objects. For each use-case realization there may be

one or more class diagrams depicting its participating classes. A class and its objects

often participate in several use-case realizations. It is important during design to

coordinate all the requirements on a class and its objects that different use-case

realizations may have.

A use-case realization represents the design perspective of a use case. It is an

organization model element used to group a number of artifacts related to the design

of a use case, such as class diagrams of participating classes and subsystems, and

sequence diagrams which illustrate the flow of events of a use case performed by a set

of class and subsystem instances.

For each use case in the use-case model, there is a use-case realization in the design

model with a realization relationship to the use case. In the UML this is shown as a

dashed arrow, with an arrowhead like a generalization relationship, indicating that a

realization is a kind of inheritance, as well as a dependency. Figure 8.3. shows a

realization relationship.

Figure 8.3. Representation of use-case realization in UML.

109

For each use-case realization there is one or more interaction diagrams depicting its

participating objects and their interactions. There are two types of interaction

diagrams: sequence diagrams and collaboration diagrams. They express similar

information, but show it in different ways. Sequence diagrams show the explicit

sequence of messages and are better when it is important to visualize the time

ordering of messages, whereas collaboration diagrams show the communication links

between objects and are better for understanding all of the effects on a given object.

8.1.2. Use case analysis

After performing Architectural Analysis we choose architecturally significant use

cases, performing Use-Case Analysis on each one. Purpose of use case analysis is:

1. To identify the classes which perform a use case’s flow of events.

2. To distribute the use case behaviour to those classes, using use-case

realizations.

3. To identify the responsibilities, attributes and associations of the classes.

4. To note the usage of architectural mechanisms

8.1.2.1. Find analysis classes

The purpose of this activity is to identify a candidate set of analysis classes which will

be capable of performing the behaviour described in use cases.

Finding a candidate set of analysis classes is the first step in the transformation of the

system from a statement of required behaviour to a description of how the system will

work. In this effort, analysis classes are used to represent the roles of model elements

which provide the necessary behaviour to fulfil the functional requirements specified

by use cases and the non-functional requirements specified by the supplemental

110

requirements. As the project focus shifts to design, these roles evolve a set of design

elements which realize the use cases.

The roles identified in Use-Case Analysis primarily express behaviour of the upper-

most layers of the system i.e. application-specific behaviour and domain specific

behaviour. Boundary classes and control classes typically evolve into application-

layer design elements, while entity classes evolve into domain-specific design

elements. Lower layer design elements typically evolve from the analysis mechanisms

which are used by the analysis classes identified here.

Three different perspectives of the system are used in the identification of candidate

classes. The three perspectives are that of the boundary between the system and its

actors, the information used by system, and the control logic of the system. The

corresponding class stereotypes are boundary, entity and control.

Identification of classes means just that they should be identified, named, and

described briefly in a few sentences.

In UML models, a stereotype is a model element that is an extensibility mechanism,

which can be used to identify the purpose of the model element to which we apply it.

A stereotype can be used to refine the meaning of a model element. Figure 8.4. shows

an example of stereotyping a class as interface.

Figure 8.4. Representation of stereotyping.

111

Analysis classes may be stereotyped as one of the following:

1. Stereotype <<boundary>> - Boundary classes.

2. Stereotype <<control>> - Control classes

3. Stereotype <<entity>> - Entity classes.

This stereotyping results in a robust object model because changes to the model tend

to affect only a specific area.

A boundary class is a class used to model interaction between the system's

surroundings and its inner workings. They are modelled according to what kind of

boundary they represent. Communication with another system and communication

with a human actor (through a user interface) have very different objectives.

A system may have several types of boundary classes:

1. User interface classes. Classes which intermediate communication with human

users of the system.

2. System interface classes. Classes which intermediate communication with other

system.

3. Device interface classes. Classes which provide the interface to devices, which

detect external events.

There is at least one boundary object for each use-case actor-pair. This object can be

viewed as having responsibility for coordinating the interaction with the actor.

Sketches, use screen shots from a user-interface prototype can illustrate the behaviour

and appearance of the boundary objects.

For analysis goals only key abstractions of the system necessary to model. Examples

of boundary classes are shown in Figure 8.5.

112

Figure 8.5. Boundary classes in UML.

An entity class is a class used to model information and associated behaviour that

must be stored. Entity objects represent the key concepts of the system being

developed, such as an event, a person, or some real-life object. They are usually

persistent, having attributes and relationships needed for a long period, sometimes for

the life of the system. A frequent source of inspiration for entity classes are the

Glossary developed during requirements. Figure 8.6. shows examples for entity

classes.

Figure 8.6. Representation of entity classes in UML.

A control class is a class used to model control behaviour specific to one or a few use

cases. Control objects often control other objects, so their behaviour is of the

coordinating type. Control classes encapsulate use-case specific behaviour.

The system can perform some use cases without control objects (just using entity and

boundary objects). They are particularly use cases that involve only the simple

manipulation of stored information.

113

More complex use cases generally require one or more control classes to coordinate

the behaviour of other objects in the system. Examples of control objects include

programs such as transaction managers, resource coordinators, and error handlers.

Control classes effectively de-couple boundary and entity objects from one another,

making the system more tolerant of changes in the system boundary. Control classes

are represented as shown in Figure 8.7.

Figure 8.7. Representation of control classes in UML.

8.1.2.2. Distribute behaviour to analysis classes

The purpose of this activity is to express the use-case behaviour in terms of

collaborating analysis classes and to determine the responsibilities of analysis classes.

For each use-case realization there is one or more interaction diagrams depicting its

participating objects and their interactions. There are two types of interaction

diagrams: sequence diagram and collaboration diagram. They express similar

information, but show it in different ways. Sequence diagrams show the explicit

sequence of messages and are better when it is important to visualize the time

ordering of messages, whereas collaboration diagrams show the communication links

between objects and are better for understanding all of the effects on a given object.

Sequence diagrams

114

We use a sequence diagram to illustrate use-case realizations and show how objects

interact to perform the behaviour of all or part of a use case. A sequence diagram

describes a pattern of interaction among objects, arranged in a chronological order; it

shows the objects participating in the interaction by their "lifelines" and the messages

that they send to each other.

Sequence diagrams are particularly important to designers because they clarify the

roles of objects in a flow and thus provide basic input for determining class

responsibilities and interfaces.

We can have objects and actor instances in sequence diagrams, together with

messages describing how they interact. The diagram describes what takes place in the

participating objects, in terms of activations, and how the objects communicate by

sending messages to one another.

An object is shown as a vertical dashed line called the "lifeline". The lifeline

represents the existence of the object at a particular time. In sequence diagrams, a

message is shown as a horizontal solid arrow from the lifeline of one object to the

lifeline of another object.

For en example, the sequence diagram shown in Figure 8.8. illustrates the use case

realization of a course registration. In this use case student successfully registers a

course coded by UML-01. Students can communicate the system through two user

interfaces realized by boundary classes Login and CourseRegistration. The use case

realization is controlled by the control class named Control. There are four entity

classes: Student, Subject, Course, and Registration.

115

Figure 8.8. The sequence diagram of use case UML-01 course registration.

collaboration diagrams

Collaboration diagrams are used to show how objects interact to perform the

behaviour of a particular use case, or a part of a use case.

A collaboration diagram describes a pattern of interaction among objects; it shows the

objects participating in the interaction by their links to each other and the messages

that they send to each other.

Along with sequence diagrams, collaborations are used by designers to define and

clarify the roles of the objects that perform a particular flow of events of a use case.

They are the primary source of information used to determining class responsibilities

and interfaces.

116

We can have objects and actor instances in collaboration diagrams, together with links

and messages describing how they are related and how they interact. The diagram

describes what takes place in the participating objects, in terms of how the objects

communicate by sending messages to one another. A link is a relationship among

objects across which messages can be sent. In collaboration diagrams, a link is shown

as a solid line between two objects. In collaboration diagrams, a message is shown as

a labelled arrow placed near a link. This means that the link is used to transport, or

otherwise implement the delivery of the message to the target object. The arrow points

along the link in the direction of the target object (the one that receives the message).

The arrow is labelled with the name of the message, and its parameters. The arrow

may also be labelled with a sequence number to show the sequence of the message in

the overall interaction.

For an example, the use case realization illustrated in Figure 8.8. is shown in a

collaboration diagram in Figure 8.9.

Figure 8.9. Collaboration diagram of use case UML-01 course registration.

117

In order to distribute behaviour to analysis classes we follow the next steps for each

independent scenario:

1. Create one or more collaboration diagrams. At least one diagram is usually

needed for the main flow of events of the use case, plus at least one diagram for

each alternate/exceptional flow.

2. Identify the analysis classes responsible for the required behaviour by stepping

through the flow of events of the scenario, ensuring that all behaviour required

by the use case is provided by the use-case realization.

3. Illustrate interactions between analysis classes in the collaboration diagram.

The collaboration diagram also shows interactions of the system with its actors.

8.1.2.3. Describe responsibilities

The purpose of this activity is to describe the responsibilities of a class of objects

identified from use-case behaviour. A responsibility is a statement of something an

object can be asked to provide. Responsibilities evolve into operations on classes in

design; they can be characterized as:

1. The actions that the object can perform.

2. The knowledge that the object maintains and provides to other objects.

Each analysis class should have several responsibilities; a class with only one

responsibility is probably too simple, while one with a dozen or more is pushing the

limit of reasonability and should potentially be split into several classes.

Responsibilities are derived from messages in collaboration diagrams. For each

message, the class of the object is examined to which the message is sent. If the

118

responsibility does not yet exist, we create a new responsibility that provides the

requested behaviour.

Responsibilities are documented with a short name for the responsibility, and a short

description. The description states what the object does to fulfil the responsibility, and

what result is returned when the responsibility is invoked.

Figure 8.10. shows the class Subject with operations identified using diagrams in

Figure 8.8. and 8.9.

Figure 8.10. Class Subject with identified methods.

The collaboration diagram modified by identified methods shown in Figure 8.11.

119

Figure 8.11. The modified collaboration diagram of use case UML-01 course

registration.

Attributes

Attributes are used to store information by a class. Specifically, attributes are used

where the information is:

1. Referred to "by value"; that is, it is only the value of the information, not its

location or object identifier which is important.

2. Uniquely "owned" by the object to which it belongs; no other objects refer to

the information.

3. Accessed by operations which only get, set or perform simple transformations

on the information; the information has no "real" behaviour other than

providing its value.

If, on the other hand, the information has complex behaviour, is shared by two or

more objects, or is passed "by reference" between two or more objects, the

information should be modelled as a separate class.

The attribute name should be a noun that clearly states what information the attribute

holds. The description of the attribute should describe what information is to be stored

in the attribute; this can be optional when the information stored is obvious from the

attribute name. The attribute type is the simple data type of the attribute. Examples

include string, integer, number. In Figure 8.12. the attributes of class Subject are

shown.

120

Figure 8.12. Attributes of class Subject.

Figure 8.13. shows all the classes realize use case UML-01 course registration.

Figure 8.13. Classes realizing use case UML-01 course registration.

Association

In order to carry-out their responsibilities, classes frequently depend on other classes

to supply needed behaviour. Associations document the inter-class relationships and

help us to understand class coupling.

121

In the collaboration diagrams links between classes indicate that objects of the two

classes need to communicate with one another to perform the Use Case. Once we start

designing the system, these links may be realized in several ways:

1. The object may have "global" scope, in which case any object in the system can

send messages to it

2. One object may be passed the second object as a parameter, after which it can

send messages to the passed object

3. The object may have a permanent association to the object to which messages

are sent.

Associations represent structural relationships between objects of different classes;

they represent connections between instances of two or more classes that exist for

some duration. It can be used to show that objects know about another objects.

Sometimes, objects must hold references to each other to be able to interact, for

example send messages to each other; thus, in some cases associations may follow

from interaction patterns in sequence diagrams or collaboration diagrams.

Most associations are binary, and are drawn as solid paths connecting pairs of class

symbols (Figure 8.14.). An association may have either a name or the association

roles.

Each end of an association is a role specifying the face that a class plays in the

association. The role name should be a noun indicating the associated object's role in

relation to the associating object. In the example shown in Figure 8.14. the role

employee is assigned to class Firm and role employer is assigned to class Person.

122

Figure 8.14. Association relationship between classes.

Multiplicity

For each role we can specify the multiplicity of its class, how many objects of the

class can be associated with one object of the other class. Multiplicity is indicated by a

text expression on the role. The expression is a comma-separated list of integer

ranges. A range is indicated by an integer for the lower value, two dots, and an integer

for the upper value.

Some examples are given in the followings:

1. 1 : exactly one object is associated.

2. * : any number of object including none.

3. 0..1 : 0 or 1 object is associated.

4. 1..* : 1 or more object is associated.

5. 22..44 : the number of object associated is from the range [22;44].

6. 9 : exactly 9 object is associated.

The navigability property on a role indicates that it is possible to navigate from an

associating class to the target class using the association. Navigability is indicated by

an open arrow, which is placed on the target end of the association line next to the

target class.

123

The Figure 8.15. shows the association between class Firm and Person when

specifying multiplicity. In the example we represent an association in which every

person has an employee and every firm may have number of employer between 1 and

10.

Figure 8.15. Representation of multiplicity.

An association class is an association that also has class properties (such as attributes,

operations, and associations). It is shown by drawing a dashed line from the

association path to a class symbol that holds the attributes, operations, and

associations for the association. The attributes, operations, and associations apply to

the original association itself. Each link in the association has the indicated properties.

Fig 8.16. shows the application of an association class. In this case associations can be

regarded as instances of class Employment. Using attribute payment we can order

different payment to employers.

Figure 8.16. Representation of association class.

Aggregation and composition

124

An aggregation is a special form of association that models a whole-part relationship

between an aggregate (the whole) and its parts. Aggregation is used to model a

compositional relationship between model elements. In UML diagrams a hollow

diamond is attached to the end of an association path on the side of the aggregate (the

whole) to indicate aggregation.

Composition is a form of aggregation with strong ownership and coincident lifetime

of the part with the aggregate. The multiplicity of the aggregate end may not exceed

one. Composition represented by a solid filled diamond attached to the end of an

association path. Figure 8.17. shows an example of aggregation and composition. A

polygon may have a number of vertices and characteristics such as color and surface

area. Using the aggregation we define Polygon have vertices at most 5. The

composition is used to express that lifetime of characteristics depends on lifetime of

polygon.

Figure 8.17. Representation of aggregation and composition relationship.

Figure 8.18. show the class diagram of classes and their associations realizing the use

case UML-01 course registration.

125

Figure 8.18. Identified classes and associations of use case UML-01 course

registration.

Enforcing consistency

1. When a new behaviour is identified, it can be checked to see if there is an

existing class that has similar responsibilities, reusing classes where possible.

The new class should be created only when sure that there is not an existing

object that can perform the behaviour.

2. As classes are identified, we have to examine them to ensure they have

consistent responsibilities. When a classes responsibilities are disjoint, we have

to split the object into two or more classes. The collaboration diagrams are

updated accordingly.

126

3. If a class is split because disjoint responsibilities are discovered, we have to

examine the collaborations in which the class plays a role to see if the

collaboration needs to be updated. The collaboration is updated if needed.

4. A class with only one responsibility is not a problem, per se, but it should raise

questions on why it is needed.

.2. Refine the architecture

8.2.1. Identify design mechanisms

8.2.2. Identify design elements

The purpose of this workflow detail is to:

1. Provide the natural transition from analysis activities to design activities,

identifying:

1.

a. appropriate design elements from analysis elements.

b. appropriate design mechanisms from related analysis mechanisms.

1. Maintain the consistency and integrity of the architecture, ensuring that:

1.

a. new design elements identified for the current iteration are integrated

with pre-existing design elements.

b. maximal re-use of available components and design elements is achieved

as early as possible in the design effort.

1. Describe the organization of the system's run-time and deployment architecture

2. Organize the implementation model so as to make the transition between

design and implementation seamless

127

8.2.1. Identify design mechanisms

The purpose of this activity is to refine the analysis mechanisms into design

mechanisms based on the constraints imposed by the implementation environment.

Design mechanism is an architectural mechanism used during the design process. It is

a refinement of a corresponding analysis mechanism and it may bind one or more

architectural and design patterns. A mechanism at the analysis level and the design

level means the same things, but at a different level of refinement. A design

mechanism assumes some details of the implementation environment.

A design pattern provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes a commonly-

recurring structure of communicating components that solves a general design

problem within a particular context. The steps for refining the information gathered on

the analysis mechanisms are as follows:

1. Identification of the clients of each analysis mechanism. We scan all clients of

a given analysis mechanism, looking at the characteristics they require for that

mechanism.

2. Identification of characteristic profiles for each analysis mechanism. There may

be widely varying characteristics profiles, providing varying degrees of

performance, footprint, security, economic cost, etc. Each analysis mechanism

is different, different characteristics will be applied to each.

3. Grouping clients according to their use of characteristic profiles. We form

groups of clients that need for an analysis mechanism with a similar

characteristics profile and we identify a design mechanism based on each such

characteristics profile. These groupings provide an initial cut at the design

128

mechanisms. Different characteristic profiles will lead to different design

mechanisms which emerge from the same analysis mechanism.

8.2.2. Identify design elements

Purpose of this activity is to analyze interactions of analysis classes to identify design

model elements.

The use case analysis results in analysis classes, which represent conceptual things

which can perform behaviour. In design, analysis classes evolve into a number of

different kinds of design elements:

1. classes, to represent a set of rather fine-grained responsibilities;

2. subsystems, to represent a set of coarse-grained responsibilities, perhaps

composed of a further set of subsystems, but ultimately a set of classes;

3. active classes, to represent threads of control in the system;

4. interfaces, to represent abstract declarations of responsibilities provided by a

class or subsystem.

When the analysis class is simple and already represent a single logical abstraction, it

can be directly mapped, 1:1, to a design class. Typically, entity classes are converted

into design classes. Since entity classes are typically also persistent, determine

whether the design class should be persistent and note it accordingly in the class

description.

When the analysis class is complex, such that it appears to embody behaviours that

cannot be the responsibility of a single class acting alone, the analysis class should be

mapped to a design subsystem. The design subsystem is used to encapsulate these

collaborations in such a way that clients of the subsystem can be completely unaware

129

of the internal design of the subsystem, even as they use the services provided by the

subsystem.

In the design model, interfaces are mainly used to define the interfaces for

subsystems. Interfaces are important for subsystems because they allow the separation

of the declaration of behaviour from the realization of behaviour.

8.3. Analyze behaviour

After creating an initial architecture or producing architecture in previous iterations

the purpose is to refining the architecture and analysing behaviour and creating an

initial set of design model elements which provide the appropriate behaviour.

Steps of this workflow item are the followings:

1. Use case analysis. Identification of the classes which perform a use case’s flow

of events and distribute the use case behaviour to those classes, using use-case

realizations.

2. Identify design elements. Analyzing interactions of analysis classes to identify

new design model elements.

3. Review the design. We have to verify that the design model fulfils the

requirements on the system and serves as a good basis for its implementation.

We have to ensure that the design model is consistent with respect to the

general design guidelines.

8.4. Design components
8.4.1. Use case design

8.4.2. Sub-system design

8.4.3. Class design

130

After the initial design elements are identified, they are further refined. This workflow

produces a set of components which provide the appropriate behaviour to satisfy the

requirements on the system. In parallel with these activities, persistence issues are

handled in Design the Database. The result is an initial set of components which are

further refined in Implementation. The purpose of Design Components workflow

detail is to:

1. Refine and update the use-case realizations based on new design element

identified.

2. Refine the definitions of design elements (including capsules and protocols) by

working out the details of how the design elements implement the behaviour

required of them.

3. Reviewing the design as it evolves.

4. Implementing the design elements as components.

5. Testing the implemented components to verify functionality and satisfaction of

requirements at the component/unit level.

The architecture of system can be represented by a component diagram in UML. It

shows a collection of model elements, such as components, and implementation

subsystems, and their relationships, connected as a graph to each other. Component

diagrams can be organized into, and owned by implementation sub-systems, which

show only what is relevant within a particular implementation subsystem.

The following structures are suitable for illustration in component diagrams:

1. Implementation sub-systems and their import dependencies.

2. The implementation sub-systems organized in layers.

3. Components (source code files) and their compilation dependencies.

4. Components (applications) and their run-time dependencies.

131

5. Important structure of components, for example to illustrate a typical use of a

component.

8.4.1. Use case design

The purpose of this workflow item is:

1. To refine use-case realizations in terms of interactions.

2. To refine requirements on the operations of design classes.

3. To refine requirements on the operations of subsystems and/or their interfaces.

8.4.2. Sub-system design

The purpose of this activity is:

1. To define the behaviours specified in the subsystem's interfaces in terms of

collaborations of contained classes.

2. To document the internal structure of the subsystem.

3. To define realizations between the subsystem's interfaces and contained

classes.

4. To determine the dependencies upon other subsystems

The external behaviours of the subsystem are defined by the interfaces it realizes.

When a subsystem realizes an interface, it makes a commitment to support each and

every operation defined by the interface. The operation may be in turn realized by:

1. an operation on a class contained by the subsystem; this operation may require

collaboration with other classes or subsystems

2. an operation on an interface realized by a contained subsystem

The collaborations of model elements within the subsystem should be documented

using sequence diagrams which show how the subsystem behaviour is realized. Each

132

operation on an interface realized by the sub-system should have one or more

documenting sequence diagrams. This diagram is owned by the subsystem, and is

used to design the internal behaviour of the subsystem.

To document the internal structure of the sub-system, create one or more class

diagrams showing the elements contained by the subsystem, and their associations

with one another. One class diagram should be sufficient, but more can be used to

reduce complexity and improve readability.

When an element contained by a sub-system uses some behaviour of an element

contained by another sub-system, a dependency is created between the enclosing sub-

systems. In figure 8.19. the UML representation of dependency between packages is

shown. It expresses that package Payment schedule is dependent on package Billing.

Figure 8.19. Dependency of sub-systems.

8.4.3. Class design

The initial design classes are created for the analysis class given as input to this

activity, and assign trace dependencies. The design classes created in this step will be

refined, adjusted in the subsequent design steps when various design properties

assigned:

1. Create Initial Design Classes.

2. Identify Persistent Classes.

133

3. Define Class Visibility.

4. Define Operations.

5. Define Methods.

6. Define States.

7. Define Attributes.

8. Define Dependencies.

9. Define Associations.

10. Define Generalizations.

11. Handle Non-Functional Requirements in General.

Depending on the type of the analysis class (boundary, entity, or control) that is to be

designed, there are specific strategies that can be used to create initial design classes.

Designing boundary classes

The general rule in analysis is that there will be one boundary class for each window,

or one for each form, in the user interface. The consequence of this is that the

responsibilities of the boundary classes can be on a fairly high level, and need then be

refined and detailed in this step. The Figure 8.20. shows the class “Course

registration” which is responsible for the control of the user interface of subject

register system.

Figure 8.20. The Corse registration boundary class.

134

The design of boundary classes depends on the user interface (or GUI) development

tools available to the project. Using current technology, it is quite common that the

user interface is visually constructed directly in the development tool, thereby

automatically creating user interface classes that need to be related to the design of

control and/or entity classes. If the GUI development environment automatically

creates the supporting classes it needs to implement the user interface, there is no need

to consider them in design - it is only necessary to design what the development

environment does not create.

Boundary classes which represent the interfaces to existing systems are typically

modelled as subsystems, since they often have complex internal behaviour. If the

interface behaviour is simple one may choose to represent the interface with one or

more design classes.

Designing entity classes

During analysis, entity classes represent manipulated units of information; entity

objects are often passive and persistent. In analysis, these entity classes may have

been identified and associated with the analysis mechanism for persistence.

Designing control classes

A control object is responsible for managing the flow of a use case and thus

coordinates most of its actions; control objects encapsulate logic that is not

particularly related to user interface issues (boundary objects), or to data engineering

issues (entity objects).

Define operations and methods

135

To identify Operations on design classes:

1. Study the responsibilities of each corresponding analysis class, creating an

operation for each responsibility. Use the description of the responsibility as the

initial description of the operation.

2. Study the use-case realizations in the class participates to see how the

operations are used by the use-case realizations. Extend the operations, one

use-case realization at the time, refining the operations, their descriptions,

return types and parameters. Each use-case realization's requirements as regards

classes are textually described in the Flow of Events of the use-case realization.

3. Study the use case Special Requirements, in order not to miss implicit

requirements on the operation that might be stated there.

Operations are required to support the messages that appear on sequence diagrams

because scripts; messages (temporary message specifications) which have not yet

been assigned to operations describe the behaviour the class is expected to perform.

Use-case realizations cannot provide enough information to identify all operations. To

find the remaining operations, consider the following:

1. Is there a way to initialize a new instance of the class, including connecting it to

instances of other classes to which it is associated?

2. Is there a need to test to see if two instances of the class are equal?

3. Is there a need to create a copy of a class instance?

4. Are any operations required on the class by mechanisms which they use (for

example, a garbage collection mechanism may require that an object be able to

drop all of its references to all other objects in order for unused resources to be

freed)?

For each operation, you should define the following:

136

1. The operation name. The name should be short and descriptive.

2. The return type.

3. A short description. Give the operation a short description consisting of a

couple of sentences, written from the operation user's perspective.

4. The parameters. The brief description of parameters should include the

following:

a. The meaning of the parameters (if not apparent from their names).

b. Whether the parameter is passed by value or by reference

c. Parameters which must have values supplied

d. Parameters which can be optional, and their default values if no value is

provided

e. Valid ranges for parameters (if applicable)

f. What is done in the operation.

g. Which by reference parameters are changed by the operation.

Once the operations have been defined the sequence diagrams are completed with

information about which operations are invoked for each message. For each operation,

identify the export visibility of the operation:

1. Public: the operation is visible to model elements other than the class itself.

2. Implementation: the operation is visible only within to the class itself.

3. Protected: the operation is visible only to the class itself, to its subclasses, or to

friends of the class (language dependent)

4. Private: the operation is only visible to the class itself and to friends of the class

A method specifies the implementation of an operation. In many cases, methods are

implemented directly in the programming language. The method describes how the

operation works, not just what it does.

137

The method, if described, should discuss:

1. How operations are to be implemented.

2. How attributes are to be implemented and used to implement operations.

3. How relationships are to be implemented and used to implement operations.

4. What other objects and their operations are to be used?

Sequence diagrams are an important source for this. From these it is clear what

operations are used in other objects when an operation is performed.

State chart diagram

For some operations, the behaviour of the operation depends upon the state the

receiver object is in. A state machine is a tool for describing the states the object can

assume and the events that cause the object to move from one state to another.

Each state transition event can be associated with an operation. Depending on the

object's state, the operation may have a different behaviour. States are often

represented using attributes; the state-chart diagrams serve as input into the attribute

identification step.

State machines are used to model the dynamic behaviour of a model element. They

are used to define state-dependent behaviour, or behaviour that varies depending on

the state in which the model element is in. Model elements whose behaviour does not

vary with its state of the element are passive classes whose primary responsible is to

manage data.

A state machine consists of states, linked by transitions. A state is a condition of an

object in which it performs some activity or waits for an event. An object may remain

in a state for a finite amount of time. A transition is a relationship between two states

138

which is triggered by some event, which performs certain actions or evaluations, and

which results in a specific end-state. Internal transitions are transitions that are

handled without causing a change in state. Figure 8.21. shows the UML

representations of state. In the right side case the lower part of state can be used to

define actions done by the object.

Figure 8.21. UML representations of state.

A transition has five properties: Source state, Event trigger, Guard condition, Action,

Target state.

The event trigger is the event that makes the transition eligible if its guard condition is

satisfied.

The guard condition is a boolean expression that is evaluated when the transition is

triggered by the reception of the event trigger.

The action is an executable atomic computation, meaning that it cannot be interrupted

by an event and therefore runs to completion. Entry and exit actions allow the same

action to be dispatched every time the state is entered or left respectively. Internal

transitions allow events to be handled within the state without leaving the state,

thereby avoiding triggering entry or exit actions. The Figure 8.22. represent the

actions related to a state.

139

Figure 8.22. Representation of actions relating a state.

Figure 8.23. State-chart diagram of UML-01 course object.

Figure 8.23. shows the state transitions of UML-01 course object introduced in the

sequence diagram in figure 8.8. It shows four states and five transitions. Following the

initial state symbol the object enter the state under initialization. The object may have

two final states. The object may enter the state full when the number of course

students reaches a limit number. The another final states is the state deleted. Object

enters this state due to any course delete event. The fourth state is the state opened.

140

The object remains in this state until the number of registered course students number

is under the course limit.

Define attributes

Attributes provide information storage for the class instance, and are often used to

represent the state of the class instance. Any information the class itself maintains is

done through its attributes. For each attribute, define the following:

1. Its name, which should follow the naming conventions of both the

implementation language and the project.

2. Its type, which will be an elementary data type supported by the

implementation language.

3. Its default or initial value, to which it is initialized when new instances of the

class are created.

4. Its visibility: Public, Protected, Private or Implementation.

5. For persistent classes, whether the attribute is persistent (the default) or

transient.

Define dependencies

For each case where the communication between objects is required dependency

between sender and receiver has to be established in the following case:

1. The reference to the receiver passed as an parameter to the operation. The

visibility of link is set to „parameter” in collaboration diagram.

2. The receiver a global object. In the collaboration diagram the visibility of link

is set to „global”.

3. The receiver a temporary object created and destroyed during the operation

itself. The visibility of link is set to „local” in the collaboration diagram.

141

8.5. Implementation

The purpose of implementation is:

1. to define the organization of the code, in terms of implementation subsystems

organized in layers

2. to implement classes and objects in terms of components (source files, binaries,

executables, and others)

3. to test the developed components as units

4. to integrate the results produced by individual implementers (or teams), into an

executable system

The implementation is consists of the following workflow details:

1. Structure of implementation model. The purpose of this workflow detail is to

ensure that the implementation model is organized in such a way as to make the

development of components and the build process as conflict-free as possible.

A well-organized model will prevent configuration management problems and

will allow the product to built-up from successively larger integration builds.

2. Plan the integration. The purpose of this workflow detail is to plan which

subsystems should be implemented, and the order in which the subsystems

should be integrated in the current iteration.

3. Implement components. Writing source code, adapt existing components,

compile, link and perform unit tests, as they implement the classes in the design

model. If defects in the design are discovered, the implementer submits rework

feedback on the design. The implementers also fix code defects and perform

unit tests to verify the changes. Then the code is reviewed to evaluate quality

and compliance with the Programming Guidelines.

142

4. Integrate each subsystem. Integration of the new and changed components from

the individual implementers into a new version of the implementation

subsystem. Integrate the System. Integration of the system, in accordance with

the integration build plan, by adding the delivered implementation subsystems

into the system integration workspace and creating builds. Each build is then

integration tested by a tester.

8.6. Deployment

The Deployment Discipline describes the activities associated with ensuring that the

software product is available for its end users. The Deployment Discipline describes

several modes of product deployment. The main activities of Plan Deployment

workflow detail are the followings:

1. Plan the product deployment. Deployment planning needs to take into account

how and when the product will be available to the end user.

2. Forming a high degree of customer collaboration. A successful conclusion to a

software project can be severely impacted by factors outside the scope of

software development such as the building, hardware infrastructure not being in

place, and the staff being ill-prepared for cut-over to the new system.

3. Support of the system. The Deployment Plan needs to address not only the

deliverable software, but also the development of training material and system

support material to ensure that end users can successfully use the delivered

software product.

Once the product has been tested at the development site it is prepared for delivery to

the customer. The support materials that is required to install, operate, use and

maintain the delivered system are parts of the delivered system. In order to introduce

143

the software as product to the software market and deliver it to end users the

following activities are included in deployment discipline:

1. Develop support material. The purpose of this workflow detail is to produce the

support materials needed to effectively deploy the product to its users.

2. Manage acceptance test. Acceptance testing is formal testing conducted to

determine whether or not a system satisfies its acceptance criteria, and to

enable the customer, user or authorized entity to determine whether or not to

accept the system. Acceptance testing is often conducted at the development

site, and then at the customer site using the target environment.

3. Produce deployment unit. In this workflow a deployment unit is created that

consists of the software, and the necessary accompanying artifacts required to

effectively install and use it.

4. Package product. This workflow detail describes the necessary activities to

create the final software product by packaging the deployment unit, installation

scripts, and user manuals together.

5. Provide access to download site. The purpose of this workflow detail is to make

the product available for purchase, and download over the internet.

6. Beta test product. Development of a beta version of software helps to get

feedback information on the product from users.

7.Chapter 9. Software testing

The general testing process starts with the testing of individual program units such as

functions or objects. The aim of the component testing is to discover defects by

testing individual program components. Components are usually integrated to form

sub-systems and finally to the complete system. System testing focuses on

establishing that the sub-system or the complete system meet its functional and non-

functional requirements, and does not behave in unexpected ways. Component testing

144

by developers is based on understanding of how the components should operate using

test data. However, system testing is rigorously based on written system specifications

The software testing process has the following main goals:

1. To demonstrate that the software meets its requirements. This means that there

should be at least one test for every user and system requirements.

2. To discover faults or defects in the software. The objective of defect testing is

the exploration and elimination of all kinds of undesirable system behaviour,

such as system crashes, unwanted interactions with other systems, incorrect

computations and data corruption.

The first goal is called validation testing. In this case the system is tested by a given

set of test cases that reflect the system’s expected use. For validation testing, a test is

considered to be successful if the system performs correctly. The second goal leads to

defect testing, where the test cases are designed to expose defects. In this case, a

successful test is one that exposes a defect that causes the system to perform

incorrectly.

Figure 9.1. A model of the software testing process.

145

A general model of the testing process is shown in Figure 9.1. Test cases are

specifications of the inputs to the test, the expected output from the system and a

statement of what is being tested. Test data are the inputs that have been created to

test the system. Testing is based on a subset of possible test cases.

9.1. Unit testing
9.1.1. Interface testing

Unit testing tests the individual components in the system. It is a defect testing

process so its purpose is to locate faults in these components. In most cases, the

developers of components are responsible for component testing. The components

may be tested at unit testing are the followings:

1. Object classes, functions or methods within an object.

2. Composite components that are consist of several different objects or functions.

The composite components have a defined interface that can be used to access

their functionality.

Functions or methods are tested by a set of calls to these routines with different input

parameters. In the case of testing object classes the tests have to cover all of the

features of the object. Object class testing includes the following tests:

1. The testing all operations associated with the object

2. The testing adjustability of all attributes associated with the object

3. The testing all possible states of the object. This means that all events that

cause a state change in the object have to be simulated.

In the case of inheritance the tests of object classes are more difficult. Where a

superclass provides operations that are inherited by a number of subclasses, all of

these subclasses should be tested with all inherited operations.

146

9.1.1. Interface testing

In a software system many components are not simple functions or objects but they

are composite components that consist of several interacting objects. The functionality

of these components can be accessed through their defined interface. Testing these

composite components is primarily concerned with testing the interface of the

composite component created by combining these components. Interface testing is

important for object-oriented and component-based development. Objects and

components are defined by their interfaces and may be reused in combination with

other components in different systems.

9.2. System testing
9.2.1. Integration testing

9.2.2. Functional testing

9.2.3. Performance testing

System testing involves integrating two or more components that implement any

system functions or features and then testing this integrated system. In an iterative

development process, system testing is concerned with testing an increment to be

delivered to the customer. In the case of a waterfall development process, system

testing is concerned with testing the entire system. Therefore, system testing may have

two distinct phases:

1. Integration testing. After integrating a new component the integrated system is

tested. When a problem is discovered, the developers try to find the source of

the problem and identify the components that have to be debugged.

2. Functional testing. The version of the system that could be released to users is

tested. Here, the main objective is to validate the system that it meets its

147

requirements and ensure that the system is dependable. Where customers are

involved in release testing, this is called acceptance testing. If the release is

good enough, the customer may then accept it for use.

Fundamentally, the integration testing is considered as the testing of incomplete

systems composed of clusters or groupings of system components. Functional testing

is concerned with testing the system release that is intended for delivery to customers.

Generally, the priority in integration testing is to discover defects in the system and

the priority in system testing, is to validate that the system meets its requirements.

9.2.1. Integration testing

The process of system integration involves building a system from its components and

testing the resultant system for problems that arise from component interactions.

Integration testing checks how these components work together across their

interfaces.

System integration integrates clusters of components that deliver some system

functionality and integrating these by adding code that makes them work together.

Sometimes, the overall skeleton of the system is developed first, and components are

added to it. This is called top-down integration. Alternatively, the infrastructure

components are integrated first providing common services, such as network and

database access, and functional components added after. This is bottom-up

integration.

In order to locate errors easier an incremental approach to the system integration and

testing is suggested. Initially, a minimal system .configuration should be integrated

and tested. Then the new components are added to this minimal configuration and

tested after each added increment. If any problem arises in these tests, this probably

means that they are due to interactions with the new component.

148

Before the process of integration, it is necessary to decide the order of integration of

components. Usually, system integration is driven by customer priorities. When the

customer is not involved in the developments, the components that have the most

frequently used functionality are integrated first. Integrating and testing a new

component can change the already tested component interactions. Errors may occur

that were not exposed in the tests of the simpler configuration. This means that when a

new increment is integrated, it is important to rerun the tests for previous increments

as well. Rerunning an existing set of tests is called regression testing.

9.2.2. Functional testing

A release of the software is its final version that will be distributed to customers. The

objective of release testing is to show that the software product delivers the specified

functionality, performance and dependability, and that it does not fail during normal

use. Another name of release testing is functional testing because it is only concerned

with the functionality and not the implementation of the software.

Release testing is usually a black-box testing process where the tests are derived from

the system specification. Figure 9.2. shows the model of black-box testing. The testing

process presents inputs to the component or the system and examines the

corresponding outputs. If the outputs are not those predicted, i.e. if the outputs are in

set Oe, then the test has detected a problem with the software.

149

Figure 9.2. Black-box testing model.

During release testing, software is often tested by choosing test cases that are in the

set Ie in Figure 9.2. These inputs have a high probability of generating system failures

i.e. outputs in set Oe.

To validate that the system meets its requirements, the best approach to use is

scenario-based testing, where test cases are developed from scenarios. Usually, the

most likely scenarios are tested first, and unusual or exceptional scenarios considered

later. If use-cases are used to describe the system requirements, these use-cases and

associated sequence diagrams can be a basis for system testing.

9.2.3. Performance testing

The objective of performance tests is to ensure that the system can process its

intended load. An effective way to discover defects is the stress testing, i.e. to design

150

tests around the limits of the system. In performance testing, this means stressing the

system by making demands that are over the design limits of the software. Stress

testing has two functions:

1. It tests the failure behaviour of the system under circumstances where the load

placed on the system exceeds the maximum load.

2. It continuously stresses the system and may cause such defects that would not

normally be discovered.

Chapter 10. Project management

Software engineering projects are always subject to organizational budget and

schedule constraints. Software project managers are the responsible person for

planning and scheduling development project. They supervise the development work

to ensure that it is carried out to the organizational standards and monitor the progress

of the project. Project manager is also responsible for checking the development cost.

Software engineering is differs from other engineering activities in a number of ways

[1].

The manager of a civil engineering project can see how a product is being developed.

However, software is an intangible product. Software project managers can only see

the progress of software development by documents produced to review the software

process. In manufacturing the production processes are continuously tried and tested

and finally they may be standardized. The engineering processes for many systems are

well understood. However, there are no standard software processes and software

processes are very different from one organization to another. Due to the rapid

technological changes in computers and communications software projects are usually

151

different in some ways from previous projects. Experiences form previous projects

usually may not be transferred to a new development project.

Because of these problems some software projects may late, over budget and behind

schedule.

10.1. Management activities

The job of a software manager depends on the organization and the software product

being developed. However, most managers have a certain responsibility for the

following activities relating to a software project:

1. Proposal writing. The first task of managers in a software project is writing a

proposal. It describes the objectives of the project and how it will be carried

out. It usually includes cost and schedule estimates.

2. Project planning and scheduling. Project planning is concerned with identifying

the activities, milestones and deliverables produced by the development

project.

3. Project cost estimation. Cost estimation is concerned with estimating the

resources required to accomplish the project plan.

4. Project monitoring and reviews. Project monitoring is a continuing project

activity. The manager monitors the progress of the project and compares the

actual and planned progress and costs. Project reviews are concerned with

reviewing overall progress and technical development of the project and

checking whether the project and the goals are still aligned.

5. Personnel selection and evaluation. Project managers are usually responsible

for selecting people with appropriate skill and experience to work on the

project.

152

6. Report writing and presentations. Project managers are usually responsible for

reporting on the project to both the client and contractor organizations. They

must be able to present this information during progress reviews.

10.2. Project planning
10.2.1. The project plan

The effective management of a software project greatly depends on careful planning

the progress of the project. The plan prepared at the start of a project is considered an

initial plan and it should be used as the driver for the entire project. The initial plan

should be the best possible plan given by the available information. It evolves as the

project progresses and more information becomes available.

The subsection 11.2.1. discusses the structure of the software project plan. In addition

to the project plan managers have to prepare other types of plans such as quality plan,

maintenance plan, etc. The planning is an iterative process. Effectively, the project

plan can only be considered to be completed when the project has finished. As more

information becomes available during the project, the project plan should be revised.

The planning process starts by defining constraints affecting the project (required

delivery time, availability of labour, the total budget, etc.). In conjunction with this,

project parameters such as its structure, size and project deliverables are defined. The

process then enters a loop. Milestones and project schedule are defined and the

scheduled activities are started. After a certain time the progress of project is reviewed

and the deviation from the planned schedule are noted.

Project manager has to revise his assumptions related to project plan as more

information becomes available. If the project is delayed, project has to be rescheduled

and the project constraints and deliverables have to be negotiated with the customer.

153

10.2.1. The project plan

The project plan sets out the resources available to the project, the work breakdown

and a schedule for carrying out the work. Most project plans includes the following

sections:

1. Introduction. This summarizes the objectives of the project and sets out the

budget, time and other constraints.

2. Project organization. This defines the development team, its members and the

roles in the team.

3. Hardware and software resource requirements. This specifies the hardware and

the support software allocated to development activities.

4. Work breakdown. This sets out the breakdown of the project into activities and

identifies the milestones and deliverables associated with each activity.

5. Project schedule. Project schedule shows the dependencies between activities,

the estimated time required to complete activities and the allocation of people

to activities.

6. Risk analysis. This describes the possible project risks and the strategies to

manage them.

7. Monitoring and reporting mechanisms. This defines the management reports

that should be produced, when these should be produced and the project

monitoring mechanisms used.

154

Figure 11.1. The project scheduling process.

10.3. Project scheduling

In the project scheduling process project managers estimate the time and resources

required to complete activities and organize them into a coherent sequence (Figure

11.1.). Usually, some of activities can be carried out in parallel. Managers have to

coordinate these parallel activities and organize the work so that the labour is used

optimally.

The duration of project activities are normally at least a week. Project manager has to

estimate the resources needed to complete each task. The principal resource is the

human effort required. Other resources are related to the hardware and software

required to development activities.

Project schedules are usually represented as a set of charts showing the work

breakdown, activities dependencies and staff allocations. Bar charts (for example

Gantt chart) and activity networks are graphical notations that are used to illustrate the

project schedule. Bar charts show who is responsible for each activity and when the

155

activity is scheduled to begin and end. Activity networks show the dependencies

between the different activities. Activity networks help to identify which activities can

be carried out in parallel and which must be executed in sequence because of a

dependency on an earlier activity.

10.4. Risk management

Risk management is one of the main activities of project managers. It involves

anticipating risks that might affect the project schedule or the quality of the software

being developed and taking action to avoid these risks. The results of the risk analysis

should be documented in the project plan along with an analysis of the consequences

of a risk occurring. There are three categories of risk:

1. Project risks. These risks affect the entire project schedule.

2. Product risks. Product risks have influence on the quality and performance of

the software.

3. Business risks. These risks affect the organization developing or procuring the

software.

Project manager has to get ready for risks, understand the impact of these risks on the

project, the product and the business, and take steps to avoid these risks. Project

manager should prepare contingency plans so that, if the risks occur, he can take

immediate actions.

The risk management process is shown in Figure 11.2. It has four stages:

1. Risk identification. Possible project, product and business risks are identified.

2. Risk analysis. Using risk analysis the probability and consequences of risks are

analyzed.

156

3. Risk planning. The objective of risk planning is to avoid the risks or minimize

its effects.

4. Risk monitoring. The identified risk is continuously assessed and the avoidance

strategies are revised as more information becomes available about the risk.

Figure 11.2. The risk management process.

The risk management process is an iterative process which continues throughout the

project. As more information about the risks becomes available, the risks have to be

reanalyzed and the avoidance and contingency plans has to be also modified. The

outcomes of the risk management process should be documented in a risk

management plan.

10.4.1. Risk identification

The first stage of risk management is the identification of risks. It is concerned with

discovering possible risks to the project. Risk identification may be carried out as a

team work based on the experience of team members. Helping the process risks are

usually classified into separate groups:

1. Technology risks. These risks are related to the software or hardware

technologies that are used to develop the system.

2. People risks. Risk that are associated with the people in the development team.

157

3. Organizational risks. Risk that derive from the changes in organizational

environment.

4. Tools risks. Risk that derive from the CASE tools and other support software

used in the development process.

5. Requirements risks. Risk that derive from changes to the customer

requirements and the process of managing the requirements change.

6. Estimation risks. Risk that derive from the management estimates of the system

characteristics and the resources required to build the system.

